Introducción a las
Ecuaciones Diferenciales

Aldo Mendoza Uribe
Alessandri Canchoa Quispe
Jorge Condeña Cahuana
Carmen Monzón Monzón
Índice general

Prólogo

Capítulo 1
Ecuaciones diferenciales ordinarias

1.1 Introducción 8
 1.1.1 Familia de curvas y su ecuación diferencial 12
 1.1.2 Existencia y unicidad de soluciones 14
1.2 Ecuaciones diferenciales de primer orden 15
 1.2.1 Ecuaciones de variables separables 16
 1.2.2 Ecuaciones diferenciales homogéneas 20
 1.2.3 Ecuaciones diferenciales exactas .. 23
 1.2.4 Factores integrantes .. 27
 1.2.5 Ecuaciones diferenciales lineales de primer orden 33
1.3 Aplicaciones de las ecuaciones diferenciales 37
 1.3.1 Modelos poblacionales: la ecuación Logística 37
 1.3.2 Decrecimiento radiactivo ... 38
 1.3.3 Ley de enfriamiento de Newton .. 40
 1.3.4 Análisis compartimental ... 41
 1.3.5 Más problemas de aplicaciones .. 46
1.4 Problemas Propuestos ... 53

Capítulo 2
Ecuaciones diferenciales ordinarias de orden superior 60
2.1 Ecuaciones lineales homogéneas de segundo orden 62
 2.1.1 Soluciones de ecuaciones diferenciales lineales 62
Capítulo 3
Transformada de Laplace 98
3.1 Transformada de Laplace 98
3.1.1 Existencia de la transformada de Laplace 103
3.1.2 Propiedades de la transformada de Laplace 104
3.2 Transformada inversa de Laplace 111
3.3 Solución de problemas de valor inicial 116
3.4 Problemas propuestos 123

Capítulo 4
Sistemas de ecuaciones diferenciales lineales de primer orden 125
4.1 Sistemas de primer orden 125
4.1.1 Sistema de dos ecuaciones simples 128
4.2 Valores y vectores propios 130
4.2.1 Valores y vectores propios y diagonalización de una matriz 130
4.2.2 Semejanza y diagonalización de matrices 135
4.3 Sistemas de ecuaciones diferenciales lineales de primer orden 140
4.4 Sistemas de ecuaciones diferenciales lineales homogéneas 142
4.5 Solución de sistemas lineales homogéneos con coeficientes constantes 144
4.5.1 Método de los valores propios 144
4.5.2 Método de la matriz exponencial 157
4.6 Sistemas de ecuaciones diferenciales no homogéneas 170
4.6.1 Matriz fundamental 170
4.6.2 Método de variación de parámetros 174
4.7 Sistemas de ecuaciones diferenciales no lineales 178
4.7.1 Estabilidad de sistemas lineales 178
4.7.2 Sistemas no lineales 189
4.7.3 Linealización y estabilidad local 190
4.8 Problemas Propuestos 198

Capítulo 5
Soluciones en serie para ecuaciones diferenciales lineales 203
5.1 Revisión de series de potencias 203
5.1.1 Representación de funciones como series de potencias 205
5.2 Solución mediante series de potencias 208
5.2.1 Soluciones alrededor de puntos ordinarios 209
5.2.2 Solución cerca de puntos singulares 215
5.3 Ejercicios propuestos ... 223

Referencias ... 224
El presente texto está organizado en capítulos y secciones, ilustrados con ejemplos de nivel simple, medio y difícil, para lograr la comprensión y aprendizaje del estudiante. A continuación, se hace una sucinta y resumida descripción del contenido y desarrollo de éstos.

En el capítulo I se exponen las familias de curvas integrales, la existencia y unicidad de soluciones de una ecuación diferencial de primer orden; además, se presentan algunas técnicas para encontrar soluciones analíticas, para el caso de las ecuaciones diferenciales de variable separable, homogéneas, exactas y las lineales de primer orden. Al final del capítulo se presentan algunas aplicaciones a la física y otros.

El capítulo II está dedicado al estudio de las ecuaciones diferenciales de orden superior, la existencia y unicidad, ecuaciones lineales homogéneas de segundo orden; luego, se abordan las ecuaciones con coeficientes constantes, se ilustran ejemplos y aplicaciones. También se tratan las ecuaciones lineales no homogéneas de segundo orden con el método de los coeficientes indeterminados y el método de variación de parámetros. Finalmente, se abordan las ecuaciones diferenciales lineales de orden superior con coeficientes constantes, homogéneas y no homogéneas.

En el capítulo III se estudia la transformada de Laplace, su definición, propiedades de convergencia, linealidad, existencia y continuidad, la transformada de Laplace de una derivada, las cuales son útiles en la solución de ecuaciones diferenciales, también se aborda la transformada inversa y diversos ejemplos. Al final del capítulo se resuelven problemas de valor inicial usando la transformada de Laplace.

El capítulo IV está dedicado al estudio de los sistemas de ecuaciones diferenciales lineales de primer orden, homogéneas con coeficientes constantes, para resolver estos sistemas, se muestran el método de valores y vectores propios. Asimismo, se trata el método de la matriz exponencial. También se resuelven sistemas de ecuaciones diferenciales no homogéneas, usando el método de variación de parámetros. Por otro lado, se abordan el análisis de estabilidad de los sistemas lineales y no lineales, clasificando los puntos críticos de los sistemas. Para la estabilidad del caso no lineal, linealizamos los
sistemas y clasificamos los puntos críticos.

El capítulo V se hace un breve repaso de series de potencias, propiedades, intervalos de convergencias y la representación de funciones como series de potencias. A continuación, se presenta las soluciones de ecuaciones diferenciales en series de potencias, alrededor de puntos ordinarios y singulares. Por último, se proponen ejercicios para ser resueltos por el lector.

Finalmente, agradecemos a los colegas del Departamento de Matemática de la Facultad de Ciencias de la Universidad Nacional Agraria La Molina, quienes de una u otra manera contribuyeron a la mejora del material que ha dado origen a la presente publicación, y esperamos que esta obra sea de mucha utilidad a los estudiantes y lectores en general.

Los autores
Ecuaciones diferenciales ordinarias

1.1 Introducción

El objetivo de este capítulo es la familiarización con las ecuaciones diferenciales ordinarias de primer orden, introduciendo conceptos básicos que se utilizarán a lo largo del libro. Las ecuaciones diferenciales son una herramienta fundamental en el estudio de las matemáticas, ya que sirven para representar modelos matemáticos que son adecuados para muchos experimentos y fenómenos que se presentan en diversas áreas como: biología, química, física, ingeniería, medicina, etc.

Presentaremos varias técnicas para encontrar soluciones de algunas ecuaciones diferenciales, tales soluciones son llamadas soluciones analíticas; cabe señalar que no siempre se puede obtener la solución de una ecuación diferencial por métodos analíticos, en este caso se resuelve usando métodos numéricos.

Una ecuación diferencial que contiene únicamente derivadas ordinarias de una función desconocida es llamada una ecuación diferencial ordinaria (EDO).

El orden de una EDO está dado por el orden de la derivada de mayor orden que aparece en la ecuación diferencial.

Si una EDO se puede expresar como un polinomio respecto a sus derivadas, el grado de la ED es el grado de la derivada de mayor orden.

Ejemplo 1.1

Halle el orden y el grado de las siguientes ecuaciones diferenciales:

(a) \(\sqrt{1 + (y''')^2} - xe^y = 0, \quad y = y(x) \).

 Es una EDO de tercer orden o de orden 3 y como \(1 + (y''')^2 = (xe^y)^2 \) su grado es dos.

(b) \(3 \frac{d^2x}{dt^2} - t^2 \frac{dx}{dt} = \ln t, \quad x = x(t) \).

 Es una EDO de segundo orden o de orden 2 y su grado es uno.
(c) \[\left(\frac{dy}{dx} \right)^3 + \left(\frac{d^4 y}{dx^4} \right)^6 \left(\frac{dy}{dx} \right)^3 - \left(\frac{d^4 y}{dx^4} \right)^6 = y + x^2, \quad y = y(x). \]

Esta ecuación diferencial se puede expresar como

\[\left(\frac{dy}{dx} \right)^6 - \left(\frac{d^4 y}{dx^4} \right)^{12} = y + x^2 \]

Es una EDO de cuarto orden o de orden 4 y su grado es 12.

(d) \[(y'')^7 + (y')^4 + y^5 + 3x = 0, \quad y = y(x). \]

Es una EDO de segundo orden o de orden 2 y su grado es 7.

Esta ecuación diferencial tiene la forma

\[G(x, y, y', y'') = 0 \]

donde

\[G(x, y, y', y'') = (y'')^7 + (y')^4 + y^5 + 3x. \]

Definición 1.1

Una función \(y = \phi(x) \) definida en cierto intervalo \(I \) y derivable hasta el orden \(n \) en \(I \), es llamada una solución sobre \(I \) de una EDO dada, si

\[F(x, \phi(x), \phi'(x), \phi''(x), \cdots, \phi^{(n)}(x)) = 0, \quad \text{para todo } x \in I. \]

Si se puede despejar la solución como \(y = \phi(x) \) se dice que es una solución explícita, en otro caso si \(y = \phi(x) \) está definida implícitamente por una ecuación de la forma \(E(x, y) = 0 \) se dice que esta ecuación es una solución implícita.

Ejemplo 1.2

Verifique que cada una de las siguientes funciones son una solución de la correspondiente ecuación diferencial.

a) \[\frac{dy}{dx} = 3y, \quad y(x) = e^{3x}, \quad I \subset \mathbb{R}. \]

Solución.

i) \(y(x) = e^{3x}, \quad \text{Dom}(y) = \mathbb{R} \)

\[\frac{dy}{dx} = 3e^{3x}, \quad \text{Dom} \left(\frac{dy}{dx} \right) = \mathbb{R} \]

ii) Se tiene \(\frac{dy}{dx} = 3y(x) \) para todo \(x \in \mathbb{R} \).

iii) Como

\[\frac{dy}{dx} = 3e^{3x}, \quad 3y(x) = 3e^{3x} \]

Se cumple \(\frac{dy}{dx} = 3y(x) \) para todo \(x \in \mathbb{R} \).

Así, por (i), (ii) y (iii) tenemos que \(y = e^{3x} \) satisface la ecuación diferencial para todo \(x \in \mathbb{R} \). Por lo tanto, \(y = e^{3x} \) es una solución (explícita) de la ecuación dada definida sobre \(I = \mathbb{R} \).

b) \[y'' + 2y' + y = 0, \quad y(x) = xe^{-x}, \quad I \subset \mathbb{R}. \] Ejercicio.
Ejemplo 1.3

Dada la ecuación diferencial
\[y''(t) + \frac{2}{t-1} y'(t) = \frac{2}{(t-1) t} - \frac{1}{t^2}, \]

verificar que \(\phi(t) = \ln t \) es una solución de la ecuación diferencial dada e indicar el dominio de definición.

Solución.

i) \(\phi(t) = \ln t, \quad \text{Dom} \ (\phi) = [0, +\infty[\)
\(\phi'(t) = 1/t, \quad \text{Dom} \ (\phi') = [0, +\infty[\)
\(\phi''(t) = -1/t^2, \quad \text{Dom} \ (\phi'') = [0, +\infty[\)

ii) \(y''(t) + \frac{2}{t-1} y'(t) = \frac{2}{(t-1) t} - \frac{1}{t^2}, \quad t \neq 1, \ t \neq 0. \)

iii) \[
\begin{align*}
 y''(t) + \frac{2}{t-1} y'(t) &= \phi''(t) + \frac{2}{t-1} \phi'(t) \\
 &= \frac{-1}{t^2} + \frac{2}{t-1} \frac{1}{t} \\
 &= \frac{2}{(t-1) t} - \frac{1}{t^2} \quad (\text{Se cumple})
\end{align*}
\]

Así, por (i), (ii) y (iii) vemos que \(y = \ln t \) satsface la ecuación diferencial para todo \(t \in]0, +\infty[\setminus \{0, 1\} \).
Por lo tanto, \(\phi(t) = \ln t \) es una solución (explícita) de la ecuación dada definida sobre \(I_1 =]0, 1[\) o \(I_2 =]1, +\infty[\).

Definición 1.2

La solución de una ecuación diferencial ordinaria del cual se puede deducir a todas o a casi todas las soluciones de la ecuación diferencial, es llamada la **solución general** de la ecuación diferencial.

Ejemplo 1.4

Halle la solución general de la ecuación diferencial \(\frac{dy}{dx} = 2x \).

Solución.

Integrando
\[
\int \frac{dy}{dx} \ dx = \int 2x \ dx \quad \text{o} \quad \int dy = \int 2x \ dx
\]
se obtiene
\[y = x^2 + c_1. \]

Se verifica que es una solución de la ecuación dada. Además, se observa que es una familia de soluciones que dependen de un parámetro \(c_1 \); es decir, que para cada valor de \(c_1 \) se tiene una solución distinta. Por ejemplo, para \(c_1 = 0 \), se tiene la solución \(y = x^2 \), y para \(c_1 = -1 \), se tiene la solución \(y = x^2 - 1 \).

En el ejemplo anterior, las soluciones que se obtienen de la solución general dando valores a \(c \), son
llamados *soluciones particulares* de la ecuación diferencial. Cuando existe alguna solución que no se puede obtener particularizando el parámetro c, recibe el nombre de *solución singular*.

Ejemplo 1.5

La solución general de la ecuación diferencial $y' - y = 0$, es la familia de funciones $y = Ce^x$, con $C \neq 0$, que es una familia de funciones dependientes del parámetro C. Una solución particular de dicha ecuación es $y = 3e^x$. La función $y = 0$ es también solución de ella y no pertenece a la familia de funciones dadas, por lo que constituye una solución singular de la ecuación.

En la mayoría de los casos, determinar una solución particular de una ecuación diferencial consistirá en resolver un problema de valores iniciales o un problema de contorno; como veremos a continuación.

Definición 1.3

Un problema de valor inicial o problema de Cauchy es una ecuación diferencial ordinaria junto con una o más condiciones (en función del orden de la ecuación diferencial) que debe verificar la solución. Para el caso de una ecuación diferencial de primer orden se tiene el problema de valor inicial.

\[
\begin{align*}
y' &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

Una solución ϕ de este problema de valor inicial es una solución de la ecuación diferencial

\[
y' = f(t, y)
\]

tal que $\phi(t_0) = y_0$. En el siguiente problema de valor inicial

\[
\begin{align*}
F(t, y, y', y'') &= 0 \\
y(t_0) &= y_0 \\
y'(t_0) &= y_1
\end{align*}
\]

la ecuación diferencial es de orden dos y tiene el mismo número de condiciones iniciales.

Ejemplo 1.6

1. La ecuación diferencial de primer orden

\[
\begin{align*}
y' + 2y &= x^2 + 5 \\
y(0) &= 3
\end{align*}
\]

es un problema de valor inicial.

2. La ecuación diferencial de segundo orden

\[
\begin{align*}
y'' + y &= 0 \\
y(0) &= 1, \quad y(\pi/2) = 5
\end{align*}
\]
no es un problema de valor inicial dado que las condiciones se dan para \(t = 0 \) y \(t = \pi / 2 \)
y(0) = 1, estos problemas son llamados un problema con condiciones de contorno.

1.1.1 Familia de curvas y su ecuación diferencial

Como en general las soluciones de una ecuación diferencial son funciones de la variable independiente, es decir curvas en el plano, tenemos la siguiente definición.

Definición 1.4

La gráfica de una solución de una ecuación diferencial se denomina *curva integral*.

Ejemplo 1.7

Halle las curvas integrales de la ecuación diferencial: \(yy' = -x \).

Solución.

Las soluciones de esta ecuación son \(x^2 + y^2 = K^2 \); las curvas integrales representan una familia de circunferencias con centro el origen de coordenadas y radio \(r = K \), con \(K > 0 \). Graficamos algunas curvas integrales para \(K = 1 \), \(K = 2 \) y \(K = 3 \).

![Figura 1.1: Circunferencias concéntricas.](image)

Ejemplo 1.8

Encuentre las curvas integrales de la ecuación diferencial: \(y' = -\frac{y}{x} \).

Solución.

Las soluciones de esta ecuación son \(x y = K \); las curvas integrales son una familia de hipérbolas equiláteras con centro en el origen.
Ejemplo 1.9

La familia \(y = x^3 + C_1 x^2 + C_2 \) es solución general de la ecuación \(y'' - \frac{1}{x} y' - 3x = 0 \).

En efecto, tenemos que

\[
\begin{align*}
 y' &= 3x^2 + 2C_1 x \\
 y'' &= 6x + 2C_1
\end{align*}
\]

luego

\[
y'' - \frac{1}{x} y' - 3x = 6x + 2C_1 - \frac{1}{x} (3x^2 + 2C_1 x) - 3x \\
 &= 6x + 2C_1 - 6x - 2C_1 = 0
\]

La familia \(y^3 = \frac{1}{x} + C x^3 \) es una solución general de la ecuación diferencial \(x y^2 y' + y^3 = \frac{2}{3x} \). En efecto, tenemos

\[
3 y^2 y' = -\frac{1}{x^2} - \frac{3C}{x^4}
\]

de donde

\[
3 x y^2 y' = -\frac{1}{x^3} - \frac{3C}{x^3}
\]

Como \(y^3 = \frac{x^2 + C}{x^3} \) tenemos que \(C = x^3 y^3 - x^2 \) y por tanto

\[
3 x y^2 y' = -\frac{1}{x} - \frac{3 (x^3 y^3 - x^2)}{x^4} \\
 = -\frac{1}{x} - 3 y^3 + \frac{3}{x} \\
 = -3 y^3 + \frac{2}{x}
\]

Así,

\[
x y^2 y' = -y^3 + \frac{2}{3x}
\]

de donde

\[
x y^2 y' + y^3 = \frac{2}{3x}.
\]
1.1.2 Existencia y unicidad de soluciones

Como hemos visto en los ejemplos anteriores, la solución general de una ecuación diferencial es una familia de funciones. Además, se puede presentar como un problema de valores iniciales o como un problema con condiciones de contorno. Vamos a centrarnos, por su sencillez, en los problemas de valores iniciales en ecuaciones diferenciales de primer orden y de primer grado. Ante un problema de este tipo podemos plantearnos las preguntas

1. ¿Existe solución al problema?

2. ¿Existe solución, ella es única? Es decir, ¿existe un plano donde para cada \((x_0, y_0)\) sea posible encontrar una y sólo una curva integral de la ecuación que pase por él?

Respondemos a estas preguntas con el siguiente teorema.

Teorema 1.1: De existencia y unicidad

Sea \(\frac{dy}{dt} = f(t, y)\) una ecuación diferencial de primer orden tal que las funciones \(f\) y \(\frac{\partial f}{\partial y}\) son continuas en algún rectángulo abierto \(R = \{(t, y) \in \mathbb{R}^2 : a < t < b, c < y < d\}\) tal que \((t_0, y_0) \in R\). Entonces el siguiente problema de valor inicial

\[
\begin{align*}
\frac{dy}{dt} &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

tiene una única solución \(y = \phi(t)\) definida en algún intervalo \(I =< t_0 - \delta, t_0 + \delta > < a, b >\).

![Figura 1.3: Región rectangular \(R\).](image)
Ecuaciones diferenciales de primer orden

1. Ecuaciones diferenciales ordinarias

Ejemplo 1.10

Analice la existencia y unicidad del siguiente problema de valor inicial

\[
\begin{align*}
\frac{dy}{dx} &= -x \\
y(1) &= 2
\end{align*}
\]

Solución.
Observamos que \(f(x, y) = -x \) es una función polinomial y continua en todo \(\mathbb{R}^2 \). En particular, si tomamos un rectángulo

\[\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : 0 < x < 2, \ 1 < y < 3\} \]

vemos que \(f \) es continua en el rectángulo. Así, el PVI tiene solución en el intervalo \(]0, 2[\) que contiene a \(x_0 = 1 \). Por otro lado, también se observa que \(\frac{\partial f}{\partial y} = 0 \) es continua en el rectángulo \(\mathcal{R} \); entonces vemos que la solución es única en algún intervalo \(I \subset]0, 2[\), que contiene a \(x_0 = 1 \). Por lo que, usando el teorema anterior, se verifica la existencia y unicidad de la solución.

Ejemplo 1.11

Verifique si el teorema de existencia y unicidad es aplicable al siguiente problema de valor inicial:

\[
\begin{align*}
\frac{dy}{dt} &= (y - 1)^{1/7} \\
y(0) &= 1
\end{align*}
\]

Solución.
Se observa que

\[f(t, y) = (y - 1)^{1/7} \quad \frac{\partial f}{\partial y}(t, y) = \frac{1}{7}(y - 1)^{-6/7}, \]

además, cada función es continua en todo \(\mathbb{R}^2 \) excepto en la recta \(y = 1 \). Por lo que no se puede dibujar ningún rectángulo que contenga a \((0, 1) \), en el cual \(f \) y \(\frac{\partial f}{\partial y} \) sean continuas. Por lo tanto, no es aplicable el teorema de existencia y unicidad. Sin embargo, vemos que

\[\phi_1(t) = 1 \quad \phi_2(t) = 1 + t^{1/6}, \]

son dos funciones que satisfacen la ecuación diferencial y la condición inicial \(y(0) = 1 \). Finalmente, podemos concluir que, el problema de valor inicial no tiene solución única.

1.2 Ecuaciones diferenciales de primer orden

En esta sección vamos a considerar algunos tipos básicos de ecuaciones diferenciales ordinarias de primer orden que admiten una técnica determinada para calcular su solución y estudiaremos los diversos procedimientos que permiten obtener dicha solución.
Una ecuación diferencial ordinaria de primer orden se puede expresar de la

Forma normal: \(y'(x) = f(x, y(x)) \)
Forma implícita: \(F(x, y(x), y'(x)) = 0 \)
Forma diferencial: \(P(x, y)\, dx + Q(x, y)\, dy = 0 \)

1.2.1 Ecuaciones de variables separables

Una ecuación diferencial es separable si tiene o se puede reducir a una de las siguientes formas

(a) \(A(x)\, dx = B(y)\, dy \)
(b) \(M(x)\, dx + N(y)\, dy = 0 \)
(c) \(A(x)\, B(y)\, dx + C(x)\, D(y)\, dy = 0 \)
(d) \(\frac{dy}{dx} = h(x)\, g(y) \)

La solución general de una ecuación separable, se obtiene llevando a la forma (a) o (b) y luego integraendo:

(i) \(\int A(x)\, dx = \int B(y)\, dy \)
(ii) \(\int M(x)\, dx + \int N(y)\, dy = 0 \)

Ejemplo 1.12

Resolver: \(\frac{dy}{dx} = y(2 + \sen x) \).

Solución.

La ecuación se puede expresar como \(\frac{dy}{y} = (2 + \sen x)\, dx \), si \(y \neq 0 \) entonces integrando ambos miembros, se tiene

\[\ln y = 2x - \cos x + \ln k. \]

Por lo tanto, la solución general explícita está dada por

\[y = Ce^{2x - \cos x}, \]

donde \(C = \ln k, k > 0 \). Se observa que, de la restricción \(y \neq 0 \), se verifica que la función \(y(x) = 0 \), \(x \in \mathbb{R} \) también es una solución (particular) de la ecuación diferencial.

Ejemplo 1.13

Resolver: \(y\, \sen x \cdot e^{\cos x}\, dx + y^{-1}\, dy = 0 \).

Solución.

Como \(y \neq 0 \) la ecuación es equivalente a

\[y^{-2}\, dy = -\, \sen x \cdot e^{\cos x}\, dx. \]

Luego, integrando la última ecuación

\[\int y^{-2}\, dy = -\int \sen x \cdot e^{\cos x}\, dx \quad o \quad \frac{y^{-1}}{-1} = e^{\cos x} + C. \]
Así, tenemos que la solución general implícita es

\[y = -\frac{1}{e^{\cos x} + C}. \]

Ejemplo 1.14

Resolver: \((1 + e^x) y' = e^x\).

Solución.

Se observa que la ecuación es equivalente a

\[y' = \frac{e^x}{e^x + 1} \quad \text{o} \quad y\,dy = \frac{e^x\,dx}{e^x + 1}; \]

luego, integrando la última ecuación, tenemos

\[\frac{y^2}{2} = \ln(1 + e^x) + C. \]

Finalmente, la solución queda determinada como

\[y^2 = 2\ln(1 + e^x) + 2C. \]

Ejemplo 1.15

Resolver: \((x - 4) y^4\,dx - x^3 (y^2 - 3)\,dy = 0.\)

Solución.

Separamos las variables dividiendo entre \(y^4x^3\), obteniendo

\[\left(\frac{x-4}{x^3} \right) dx - \left(\frac{y^2 - 3}{y^4} \right) dy = 0 \quad \text{o} \quad \left(\frac{x-4}{x^3} \right) dx = \left(\frac{y^2 - 3}{y^4} \right) dy. \]

luego, si integramos a cada miembro

\[\int \left(\frac{x-4}{x^3} \right) dx = \int \left(\frac{y^2 - 3}{y^4} \right) dy \]

se obtiene

\[-\frac{1}{x} + \frac{2}{x^2} = -\frac{1}{y} + \frac{1}{y^3} + C. \]

Por lo tanto, la solución general es

\[-\frac{1}{x} + \frac{2}{x^2} + \frac{1}{y} - \frac{1}{y^3} = C. \]

Ecuaciones reducibles a separables

La ecuación diferencial

\[\frac{dy}{dx} = f(ax + by + c) \]

se reduce a una ecuación diferencial de variables separables, con el cambio de variable

\[z = ax + by + c. \]

En efecto, si \(z = ax + by + c \), se obtiene

\[\frac{dz}{dx} = a + b\frac{dy}{dx} \quad \text{o} \quad \frac{dy}{dx} = \frac{1}{b} \frac{dz}{dx} - \frac{a}{b}. \]
De este modo, reemplazando el cambio, obtenemos

\[\frac{1}{b} \frac{dz}{dx} - \frac{a}{b} = f(z) \]

Así, la ecuación diferencial se convierte en

\[\frac{dz}{bf(z) + a} = dx, \]

la cual es una ecuación de variables separables.

Ejemplo 1.16

Resolver: \(\frac{dy}{dx} = x + y - 3 \)

Solución.

Con el cambio de variable \(z = x + y - 3 \), se obtiene

\[\frac{dz}{dx} = 1 + \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{dz}{dx} - 1. \]

Luego, reemplazando el cambio, se obtiene la siguiente ecuación diferencial variables separables

\[\frac{dz}{z + 1} = dx. \]

Por lo que, integrando obtenemos

\[\ln|z + 1| = x + C_1. \]

Luego, la solución general explícita es

\[y = C e^x - x + 2, \]

donde \(C = e^{C_1} \).

Ejemplo 1.17

Resolver: \(\frac{dy}{dx} = (4x - y + 7)^2 \)

Solución.

Haciendo el cambio de variable \(z = 4x - y + 7 \), tenemos que \(\frac{dy}{dx} = 4 - \frac{dz}{dx} \), entonces reemplazando el cambio, obtenemos la siguiente ecuación diferencial

\[\frac{dz}{z^2 - 4} = -dx \]

que es de variables separables. Luego, integrando obtenemos

\[\frac{1}{4} \ln \left| \frac{z - 2}{z + 2} \right| = -x + C \quad \text{o} \quad \frac{4x - y + 5}{4x - y + 9} = C e^{-4x}. \]

Finalmente, se obtiene la solución general explícita

\[y = 4x + 9 - \frac{4}{1 - Ce^{-4x}}, \quad \text{donde} \quad C = e^{4C_1}. \]
Otras ecuaciones reducibles a la forma separable

Tenemos que hay muchas ecuaciones diferenciales de primer orden que no son separables, pero que se pueden llevar a esa forma por medio de algunos cambios de variable. Aquí, mostraremos otro cambio de variable, para ciertas ecuaciones diferenciales de la forma

$$\frac{dy}{dx} = f(x, y) = g\left(\frac{y}{x}\right).$$

Para esta forma de ecuación, se sugiere hacer el cambio de variable $u = \frac{y}{x}$, que implica $y = ux$. Luego, derivando vemos que

$$y' = u + xu'. $$

Así, reemplazando en la ecuación diferencial, obtenemos

$$u + xu' = g(u) \Leftrightarrow xu' = g(u) - u. $$

Finalmente, vemos que la EDO se convierte en

$$\frac{du}{g(u) - u} = \frac{dx}{x}. $$

Se observa que, la última expresión es una ecuación diferencial de variables separables; por lo que se integra, y a continuación reemplazamos u por $\frac{y}{x}$, obteniéndose la solución general de la EDO.

Ejemplo 1.18

Resolver: $xy' = (y - x)^3 + y$.

Solución.

La ecuación se puede expresar como

$$y' = \frac{x^3(y - 1)^3}{x} + \frac{y}{x}. $$

Luego, haciendo $y = ux$, la ecuación se reduce a

$$y' = u + xu' = x^2(u - 1)^3 + u, $$

o equivalentemente,

$$\frac{du}{(u - 1)^3} = xdx. $$

Observamos que esta última ecuación es de variables separables; así, integrando ambos miembros, se obtiene

$$\int \frac{du}{(u - 1)^3} = \int xdx \quad o \quad \frac{1}{2(u - 1)^2} = \frac{x^2}{2} + C $$

Reemplazando $u = \frac{y}{x}$, se obtiene la solución general dada por

$$- \frac{x^2}{(y - x)^2} = \frac{x^2}{2} + C. $$
Ecuaciones diferenciales ordinarias

Ejemplo 1.19

Hallar la solución de la siguiente ecuación diferencial: \(x^2 y' = y^2 + xy + x^2 \).

Solución.

La ecuación es equivalente a \(y' = \left(\frac{y}{x} \right)^2 + \frac{y}{x} + 1 \). Luego, haciendo \(u = \frac{y}{x} \), se tiene

\[
u + xu' = u^2 + u + 1 \quad \text{o} \quad \frac{du}{dx} = u^2 + 1.
\]

Integrando ambos miembros, tenemos

\[
\int \frac{du}{u^2 + 1} = \int \frac{dx}{x} \iff \arctan u = \ln |x| + C \iff \frac{y}{x} = \tan (\ln |x| + C)
\]

Así, concluimos que la solución general es

\[
y = x \tan (\ln |x| + C) .
\]

1.2.2 **Ecuaciones diferenciales homogéneas**

Antes de describir este tipo de ecuaciones diferenciales, presentamos la siguiente definición.

Definición 1.5

La función \(f : \Omega \subseteq \mathbb{R}^2 \to \mathbb{R} \) es denominada homogénea de grado \(k \) si

\[
f(tx, ty) = t^k f(x, y), \quad \text{para todo } (x, y) \in \Omega
\]

Ejemplo 1.20

1. La función \(f(x, y) = x^2 + y^2 \) es homogénea de grado 2, pues

\[
f(tx, ty) = (tx)^2 + (ty)^2 = t^2 x^2 + t^2 y^2 = t^2 (x^2 + y^2) = t^2 f(x, y)
\]

2. La función \(g(x, y) = 4x^4 y^2 - 3xy^5 \) es homogénea de grado 6, pues

\[
g(tx, ty) = 4(tx)^4 (ty)^2 - 3(tx)(ty)^5 = 4t^6 x^4 y^2 - 3t^6 xy^5
\]

\[
= t^6 (4x^4 y^2 - 3xy^5) = t^6 g(x, y).
\]

3. La función \(f(x, y) = x^2 - y \) no es homogénea ya que

\[
f(tx, ty) = (tx)^2 - (ty) = t (tx^2 - y) \neq tf(x, y).
\]

Definición 1.6

La ecuación diferencial de primer orden

\[
P(x, y) dx + Q(x, y) dy = 0 \quad (1.1)
\]

es homogénea si tanto \(P(x, y) \) como \(Q(x, y) \) son funciones homogéneas del mismo grado.
Teorema 1.2

Si (1.1) es una ecuación diferencial homogénea, entonces el cambio de variable $y = ux$ o $x = uy$ la transforma en una ecuación diferencial de variables separables.

Prueba.

Supongamos que $P(x, y) y Q(x, y)$ son de grado k. Además, de $y = ux$ tenemos que $dy = udx + xdu$, luego sustituyendo en la ecuación, tenemos

$$P(x, ux)dx + Q(x, ux)(udx + xdu) = 0 \quad \text{o} \quad x^k P(1, u)dx + x^k Q(1, u)(udx + xdu) = 0,$$

dividiendo entre x^k a la última ecuación, se tiene

$$0 = P(1, u) + uQ(1, u)dx + xQ(1, u)du.$$

Luego, ordenando y agrupando, obtenemos la siguiente ecuación

$$\frac{dx}{x} + \frac{Q(1, u)}{P(1, u) + uQ(1, u)}du = 0,$$

que es una ecuación diferencial de variables separables en x y u como queríamos demostrar.

Ejemplo 1.21

Resolver: $x^2 y' = y^2 + 2xy$.

Solución.

La ecuación diferencial es equivalente a

$$x^2 dy = (y^2 + 2xy)dx \quad \text{o} \quad (y^2 + 2xy)dx - x^2 dy = 0.$$

Además, observamos que $P(x, y) = y^2 + 2xy$ y $Q(x, y) = -x^2$. Luego,

$$P(tx, ty) = (ty)^2 + 2(tx)(ty) = t^2 P(x, y)$$
$$Q(tx, ty) = -(tx)^2 = t^2(-x^2) = t^2 Q(x, y)$$

Así, P y Q son funciones homogéneas de grado 2. Entonces, usando el cambio de variable $y = ux$, $dy = udx + xdu$, en la ecuación diferencial, obtenemos

$$\frac{dx}{x} = \frac{du}{u^2 + u},$$

que es una ecuación diferencial de variables separables; así, integrando

$$\int \frac{dx}{x} = \int \frac{du}{u^2 + u}$$

se obtiene

$$\ln(C|x|) = \ln \left| \frac{u}{u + 1} \right|,$$

donde esta última expresión es equivalente a $u = \frac{Cx}{1-Cx}$, pero como $u = \frac{y}{x}$, tenemos

$$\frac{y}{x} = \frac{Cx}{1-Cx}.$$

Por lo tanto, la solución general explícita es $y = \frac{Cx^2}{1-Cx}$.
Ejemplo 1.22

Resolver el problema de valor inicial: \(2xy' - 3y^2 + x^2 = 0, \quad y(1) = 2.\)

Solución.

La ecuación diferencial es equivalente a

\[(x^2 - 3y^2)\,dx + 2xy\,dy = 0, \quad y(1) = 2,\]

luego, considerando \(P(x, y) = x^2 - 3y^2 \quad y \quad Q(x, y) = 2xy,\) tenemos

\[P(tx, ty) = (tx)^2 - 3(ty)^2 = t^2(x^2 - 3y^2) = t^2P(x, y),\]
\[Q(tx, ty) = 2(tx)(ty) = t^2(2xy) = t^2Q(x, y)\]

Así, \(P\) y \(Q\) son funciones homogéneas de grado 2. Luego, usando el cambio de variable

\[y = ux \Rightarrow dy = u\,dx + x\,du,\]

en la ecuación diferencial, se tiene

\[0 = x^2(1 - 3u^2)\,dx + 2x(ux)(u\,dx + x\,du).\]

Por otro lado, se observa que esta ecuación diferencial es equivalente a

\[\frac{dx}{x} + \frac{2u}{1 - u^2}\,du = 0\]

Luego, integrando obtenemos el siguiente resultado

\[\ln |u^2 - 1| = \ln|x| + \ln C.\]

Así, tenemos que la solución general está dada por

\[y^2 = Cx^3 + x^2.\]

Finalmente, utilizando la condición inicial \(y(1) = 2\) tenemos que \(C = 3.\) Por lo tanto, la única solución del problema de valor inicial dado, es \(y^2 = 3x^3 + x^2.\)

Ejemplo 1.23

Halle la solución de:

\[\left(x - y \cos \left(\frac{y}{x}\right)\right)\,dx + x \cos \left(\frac{y}{x}\right)\,dy = 0.\]

Solución.

Dividiendo la ecuación diferencial entre \(x,\) tenemos que la ecuación es equivalente a

\[\left(1 - \frac{y}{x} \cos \left(\frac{y}{x}\right)\right)\,dx + \cos \left(\frac{y}{x}\right)\,dy = 0.\]

Luego, haciendo \(y = ux \Rightarrow dy = u\,dx + x\,du,\) tenemos

\[(1 - u \cos u)\,dx + \cos u (u\,dx + x\,du) = 0 \quad o \quad \frac{dx}{x} = -\cos u\,du.\]

Así, integrando ambos miembros de la ecuación, obtenemos

\[\ln|x| = -\sin u + C \quad o \quad u = \frac{y}{x} = \arcsen(C - \ln|x|)\]

Por lo tanto, la solución general es

\[y = x \arcsen(C - \ln|x|).\]
1.2.3 Ecuaciones diferenciales exactas

Definición 1.7: Diferencial de una función de dos variables

Si \(z = f(x, y) \) es una función de dos variables con primeras derivadas parciales continuas en una región \(\mathcal{R} \) del plano \(xy \), entonces su diferencial es

\[
\,dz = \frac{\partial f}{\partial x} \,dx + \frac{\partial f}{\partial y} \,dy. \tag{1.2}
\]

En el caso particular cuando \(f(x, y) = C \), donde \(C \) es una constante, vemos que, (1.2) implica

\[
\frac{\partial f}{\partial x} \,dx + \frac{\partial f}{\partial y} \,dy = 0.
\]

Definición 1.8

Se dice que una ecuación diferencial de primer orden de la forma

\[
P(x, y) \,dx + Q(x, y) \,dy = 0 \tag{1.3}
\]

es exacta en un rectángulo \(\mathcal{R} \subset \mathbb{R}^2 \), si existe una función \(f(x, y) \) tal que

\[
\nabla f(x, y) = (P(x, y), Q(x, y)),
\]

y la solución de (1.3) es dada por \(f(x, y) = C \).

Observación. Vemos que

\[
\nabla f(x, y) = (P(x, y), Q(x, y))
\]

es equivalente a

\[
\frac{\partial f}{\partial x}(x, y) = P(x, y) \quad y \quad \frac{\partial f}{\partial y}(x, y) = Q(x, y).
\]

Teorema 1.3

Si las primeras derivadas parciales de \(P \) y \(Q \) son continuas en un rectángulo \(\mathcal{R} \subset \mathbb{R}^2 \). Entonces, (1.3) es una ecuación diferencial exacta en \(\mathcal{R} \) si y solo si, se cumple

\[
\frac{\partial Q}{\partial x}(x, y) = \frac{\partial P}{\partial y}(x, y), \quad \text{para todo } (x, y) \in \mathcal{R}
\]

Prueba.

Si (1.3) es exacta, entonces existe una función \(f \) (función potencial) tal que

\[
\frac{\partial f}{\partial x} = P \quad y \quad \frac{\partial f}{\partial y} = Q.
\]

Entonces, para \((x, y)\) en \(\mathcal{R} \),

\[
\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial Q}{\partial x}.
\]

Recíprocamente, supongamos que \(\frac{\partial Q}{\partial x} \) \(y \frac{\partial P}{\partial y} \) son continuas sobre \(\mathcal{R} \), y que

\[
\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \quad \text{para todo } x \in \mathcal{R}.
\]
Entonces, escogemos un punto \((x_0, y_0)\) en \(\mathbb{R}\) y definimos para \((x, y)\) en \(\mathbb{R}\), una función dada por

\[
f(x, y) = \int_{x_0}^{x} P(\xi, y_0) \, d\xi + \int_{y_0}^{y} Q(x, \eta) \, d\eta.
\]

Vemos que, en estas integrales, \(x\) y \(y\) se consideran fijas y las variables de integración son \(\xi\) y \(\eta\) respectivamente. Ahora, observamos que \(y\) aparece solo en el lado derecho en la segunda integral, por lo que, por el teorema fundamental del cálculo, tenemos

\[
\frac{\partial f}{\partial y} = Q(x, y).
\]

Calcular \(\frac{\partial f}{\partial x}\) no es sencillo, ya que \(x\) ocurre en ambas integrales que definen \(f(x, y)\). Así que, para determinar \(\frac{\partial f}{\partial x}\), usamos la condición de que \(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}\).

Entonces,

\[
\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \int_{x_0}^{x} P(\xi, y_0) \, d\xi + \frac{\partial}{\partial x} \int_{y_0}^{y} Q(x, \eta) \, d\eta
= P(x, y_0) + \int_{y_0}^{y} \frac{\partial Q}{\partial x}(x, \eta) \, d\eta
= P(x, y_0) + \int_{y_0}^{y} \frac{\partial P}{\partial y}(x, \eta) \, d\eta
= P(x, y_0) + P(x, y) - P(x, y_0) = P(x, y).
\]

 Esto completa la prueba del teorema.

Ejemplo 1.24

Resolver: \((2xy - \sec^2 x) \, dx + (x^2 + 2y) \, dy = 0.\)

Solución.

Tenemos que \(P(x, y) = 2xy - \sec^2 x\) y \(Q(x, y) = x^2 + 2y\), entonces

\[
\frac{\partial Q}{\partial x} = 2x = \frac{\partial P}{\partial y}.
\]

Como las funciones polinomiales \(P\) y \(Q\), y sus derivadas parciales de primer orden son continuas en \(\mathbb{R}^2\), tenemos que la ecuación diferencial es exacta; así que existe una función \(f\) tal que:

\[
\nabla f(x, y) = (P, Q) \iff \frac{\partial f}{\partial x} = P \quad y \quad \frac{\partial f}{\partial y} = Q.
\]

Por lo que,

\[
\frac{\partial f}{\partial x} = 2xy - \sec^2 x \Rightarrow f(x, y) = \int (2xy - \sec^2 x) \, dx = x^2y - \tan x + C(y)
\]

\[
\Rightarrow \frac{\partial f}{\partial y} = x^2 + C'(y) = Q = x^2 + 2y \Rightarrow C'(y) = 2y \Rightarrow C(y) = y^2.
\]

Finalmente, se obtiene que \(f(x, y) = x^2y - \tan x + y^2\); por lo que, la solución general es \(x^2y - \tan x + y^2 = C.\)
Ejemplo 1.25

Resolver: \((1 + e^x y + xye^x) dx + (xe^x + 2) dy = 0\).

Solución.
Tenemos que
\[P(x, y) = 1 + e^x y + xye^x \quad Q(x, y) = xe^x + 2. \]

Así, vemos que
\[\frac{\partial Q}{\partial x} = e^x + xe^x = \frac{\partial P}{\partial y}; \]
como los polinomios \(P\) y \(Q\), y sus derivadas parciales de primer orden son continuas en \(\mathbb{R}^2\), la ecuación diferencial es exacta, por lo que existe una función \(f\) tal que
\[\nabla f(x, y) = (P, Q) \Leftrightarrow \frac{\partial f}{\partial x} = P \quad \frac{\partial f}{\partial y} = Q. \]

Ahora, si usamos el hecho de que \(\frac{\partial f}{\partial x} = P\), vemos que,
\[\int \frac{\partial f}{\partial x} = \int (1 + e^x y + xye^x) \, dx, \]
lo cual no es adecuado. Luego, si usamos la segunda relación \(\frac{\partial f}{\partial y} = Q\), tenemos que
\[\Rightarrow \frac{\partial f}{\partial y} = xe^x + 2 \Rightarrow f(x, y) = \int (xe^x + 2) \, dy = xye^x + 2y + C(x) \]
\[\Rightarrow \frac{\partial f}{\partial x} = ye^x + xye^x + C'(x) = P = 1 + e^x y + xye^x \]
\[\Rightarrow C'(x) = 1 \Rightarrow C(x) = x \]
Reemplazando, tenemos que \(f(x, y) = xye^x + 2y + x\). Por lo tanto, la solución general es \(xye^x + 2y + x = C\).

Ejemplo 1.26

Resolver el siguiente problema de valor inicial: \(\left(\frac{1}{x} + 2xy^2\right) dx + (2yx^2 - \cos y) \, dy = 0\), \(y(1) = \pi\).

Solución.
Vemos que
\[P(x, y) = \frac{1}{x} + 2xy^2 \quad Q(x, y) = 2yx^2 - \cos y, \]
entonces
\[\frac{\partial Q}{\partial x} = 4xy = \frac{\partial P}{\partial y}. \]
Como los polinomios \(P\) y \(Q\), y sus derivadas parciales de primer orden son continuas en \(\mathbb{R}^2\), la ecuación diferencial es exacta; así que existe una función \(f\) tal que
\[\nabla f(x, y) = (P, Q) \Leftrightarrow \frac{\partial f}{\partial x} = P \quad \frac{\partial f}{\partial y} = Q. \]
Así, tenemos
\[\frac{\partial f}{\partial x} = \frac{1}{x} + 2xy^2 \Rightarrow f(x, y) = \int \left(\frac{1}{x} + 2xy^2 \right) dx = \ln x + x^2y^2 + C(y). \]

Además,
\[\frac{\partial f}{\partial y} = 0 + 2x^2y + C'(y) = Q = 2yx^2 - \cos y \Rightarrow C'(y) = -\cos y \Rightarrow C(y) = -\sin y \]

Luego, tenemos que \(f \) está definida está dada por \(f(x, y) = \ln x + x^2y^2 + \sin y \).

Por lo que, la solución general es \(\ln x + x^2y^2 - \sin y = C \). Por otro lado, usando la condición inicial, tenemos
\[\ln(1) + (1)^2(\pi)^2 - \sin \pi = C \Rightarrow C = \pi^2. \]

Finalmente, la solución está dada por \(\ln x + x^2y^2 - \sin y = \pi^2 \).

Ejemplo 1.27

Dada la ecuación diferencial exacta \(2xy \, dx + (x^2 - 1) \, dy = 0 \). Halle su solución general, es decir, \(f(x, y) = C \), donde \(C \) es una constante real. Además, grafique en el plano \(XY \) la curva integral cuando \(C = 1 \).

Solución.

Como \(P(x, y) = 2xy \), \(Q(x, y) = x^2 - 1 \) y \(\frac{\partial Q}{\partial x} = 2x = \frac{\partial P}{\partial y} \), como los polinomios \(P \) y \(Q \), y sus derivadas parciales de primer orden son continuas en \(\mathbb{R}^2 \), tenemos que la ecuación diferencial es exacta; luego, existe \(f \) tal que \(\nabla f = (P, Q) \); es decir,
\[\frac{df}{dx} = P = 2xy \quad \frac{df}{dy} = Q = x^2 - 1 \]
de donde \(f(x, y) = x^2y + C(y) \). Entonces, \(\frac{df}{dy} = x^2 + C'(y) = x^2 - 1 \Rightarrow C(y) = -y \).

Luego, \(f(x, y) = x^2y - y \). Así, la solución general explícita, está dada por \(y = \frac{C}{x^2 - 1} \).

Finalmente, graficamos la curva integral para \(C = 1 \).

Figura 1.4: Gráfica de \(y = \frac{1}{x^2 - 1} \).
1.2.4 Factores integrantes

En esta sección estudiaremos aquellas ecuaciones que no cumplen las condiciones necesarias para ser exactas; pero que se pueden convertir en ellas. Para esto vamos a encontrar una expresión que, multiplicándola en la ecuación, la transforme en una ecuación diferencial exacta. Estas funciones reciben el nombre de factores integrantes, que en general son funciones que dependen de \(x \) y \(y \).

Se quiere encontrar una función \(\mu(x, y) \) tal que la EDO

\[
\mu(x, y)P(x, y)\,dx + \mu(x, y)Q(x, y)\,dy = 0
\]

sea exacta; es decir, que se verifique

\[
\frac{\partial(\mu P)}{\partial y} = \frac{\partial(\mu Q)}{\partial x},
\]

esto es,

\[
P\frac{\partial \mu}{\partial y} + \mu \frac{\partial P}{\partial y} = Q\frac{\partial \mu}{\partial x} + \mu \frac{\partial Q}{\partial x} \iff \mu \left[\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right] = Q \frac{\partial \mu}{\partial x} - P \frac{\partial \mu}{\partial y}.
\]

Ejemplo 1.28

Verifique que \(\mu(x, y) = \frac{1}{x^2 y^3} \) es un factor integrante de la EDO

\[
x^2 y^3 + x (1 + y^2) y' = 0
\]

y encuentre su solución.

Solución.

La ecuación diferencial es equivalente a

\[
x^2 y^3 + x (1 + y^2) \frac{dy}{dx} = 0 \iff x^2 y^3\,dx + x (1 + y^2)\,dy = 0
\]

Multiplicamos por \(\mu(x, y) = \frac{1}{x^2 y^3} \), resulta

\[
\int x\,dx = -\int \left(\frac{1}{y^2} + \frac{1}{y} \right)\,dy
\]

Vemos que la solución general implícita es

\[
x = \frac{1}{2y^2} - \ln y + C.
\]

Ejemplo 1.29

Verificar que \(\mu(x, y) = ye^x \) es un factor integrante de la EDO

\[
\left(\frac{\tan y}{y} - 2e^{-x} \tan x \right)\,dx + \left(\frac{\cos y + 2e^{-x} \sin x}{y} \right)\,dy = 0.
\]

Además, encuentre su solución.

Solución.

Se observa que la EDO es equivalente a

\[
(P(x, y))\,dx + (Q(x, y))\,dy = 0,
\]
donde \(P(x, y) = e^x \sin y - 2y \sin x \) y \(Q(x, y) = e^x \cos y + 2 \cos x \). Por otro lado, como

\[
\frac{\partial Q}{\partial x} = e^x \cos y - 2 \sin x = \frac{\partial P}{\partial y},
\]

tenemos que la EDO es exacta. Es decir, existe \(f \) tal que

\[
\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) = (P, Q)
\]

entonces

\[
\frac{\partial f}{\partial x} = P = e^x \sin y - 2y \sin x \Leftrightarrow f(x, y) = e^x \sin y + 2y \cos x + C(y).
\]

En seguida, vemos que

\[
\frac{\partial f}{\partial y} = Q \Leftrightarrow e^x \cos y + 2 \cos x + C'(y) = e^x \cos y + 2 \cos x \Leftrightarrow C'(y) = 0.
\]

Así, \(C(y) = K \). Finalmente, la solución general es

\[e^x \sin y + 2y \cos x = C. \]

Casos particulares de factores integrantes

i) Si \(\mu \) solamente depende de \(x \), entonces (1.4) se transforma en

\[
\frac{1}{Q(x, y)} \left[\frac{\partial P}{\partial y}(x, y) - \frac{\partial Q}{\partial x}(x, y) \right] dx = \frac{d\mu}{\mu},
\]

y el factor de integración es

\[
\mu(x) = \exp \left(\int \frac{1}{Q(x, y)} \left[\frac{\partial P}{\partial y}(x, y) - \frac{\partial Q}{\partial x}(x, y) \right] dx \right).
\]

ii) Si \(\mu \) solamente depende de \(y \), entonces (1.4) se transforma en:

\[
\frac{1}{P(x, y)} \left[\frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y) \right] dy = \frac{d\mu}{\mu},
\]

y el factor de integración es

\[
\mu(y) = \exp \left(\int \frac{1}{P(x, y)} \left[\frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y) \right] dy \right).
\]

A continuación mostramos algunos ejemplos de estos casos particulares.

Ejemplo 1.30

Resolver \((x + y) \, dx + \tan x \, dy = 0\).

Solución.

Como

\[
\frac{\partial P}{\partial y}(x, y) = 1 \neq \sec^2 x = \frac{\partial Q}{\partial x}(x, y),
\]

entonces, la ecuación diferencial no es exacta, pero

\[
\frac{1}{Q(x, y)} \left[\frac{\partial P}{\partial y}(x, y) - \frac{\partial Q}{\partial x}(x, y) \right] = \frac{1}{\tan x} \left[1 - \sec^2 x \right] = \frac{1}{\tan x} \left(-\tan^2 x \right) = -\tan x = h(x).
\]
Así, el factor de integración es
\[\mu(x) = e^{\int h(x) \, dx} = e^{\int -\tan x \, dx} = e^{\ln(|\cos x|)} = \cos x, \]
luego, multiplicando la ecuación diferencial por \(I(x) = \cos x \) se obtiene
\[\left(x + y\right) \cos x \, dx + \sin x \, dy = 0, \]
que es una ecuación diferencial exacta; ya que
\[\frac{\partial P_1}{\partial y}(x, y) = \cos x = \frac{\partial Q_1}{\partial x}(x, y). \]
Entonces existe \(f(x, y) \) tal que
\[\nabla f(x, y) = (P_1, Q_1) \iff \frac{\partial f}{\partial x} = P_1 \text{ y } \frac{\partial f}{\partial y} = Q_1, \]
luego,
\[\frac{\partial f}{\partial x} = x \cos x + y \cos x \Rightarrow f(x, y) = \int \left(x \cos x + y \cos x\right) \, dx \\
\Rightarrow f(x, y) = x \sin x + \cos x + y \sin x + C(y) \]
y
\[\frac{\partial f}{\partial y} = Q_1 \Rightarrow \frac{\partial f}{\partial y} = \sin x + C'(y) = \sin x \Rightarrow C'(y) = 0 \Rightarrow C(y) = C_1. \]
Así, obtenemos que
\[f(x, y) = x \sin x + \cos x + y \sin x. \]
Por lo tanto, la solución general implícita es
\[x \sin x + \cos x + y \sin x = C. \]

Ejemplo 1.31

Resolver \(2 \sin \left(y^2\right) \, dx + x \cos \left(y^2\right) \, dy = 0. \)

Solución.
Como \(\frac{dQ}{dx} = y \cos \left(y^2\right) \) y \(\frac{dP}{dy} = 4x \cos \left(y^2\right) \), la ecuación diferencial no es exacta, pero
\[\frac{1}{Q} \left(\frac{dP}{dy} - \frac{dQ}{dx} \right) = \frac{1}{xy \cos \left(y^2\right)} \left(4x \cos \left(y^2\right) - y \cos \left(y^2\right)\right) = \frac{3}{x}, \]
tenentes, el factor de integración es
\[\mu(x) = e^{\frac{3}{2} \ln x} = e^{\frac{3}{2} \ln x} = x^3. \]
Luego, la nueva ecuación diferencial es
\[2x^3 \sin \left(y^2\right) \, dx + x^4 \cos \left(y^2\right) \, dy = 0, \]
la cual es exacta, ya que
\[\frac{dQ}{dx} = 4x^3 \cos \left(y^2\right) = \frac{dP}{dy}. \]
Por lo que, existe \(f \) tal que \(\nabla f = F \); es decir,

\[
\frac{df}{dx} = P = 2x^3 \sin(y^2) \quad \frac{df}{dy} = Q = x^4 \sin(y^2)
\]

de donde vemos que \(f(x, y) = \frac{x^4}{2} \sin(y^2) + C(y) \), entonces derivando con respecto de \(y \)

\[
\frac{df}{dy} = x^4 \sin(y^2) + C'(y) = x^4 \sin(y^2) \Rightarrow C(y) = C.
\]

Así, la función \(f \) está dada por \(f(x, y) = \frac{x^4}{2} \sin(y^2) = C \). Finalmente, concluimos que la solución general es

\[
\frac{x^4}{2} \sin(y^2) = C.
\]

Ejemplo 1.32

Resolver \(2y \, dx + (x - \sin \sqrt{y}) \, dy = 0 \).

Solución.

Como \(\frac{\partial P}{\partial y}(x, y) = 2 \neq 1 = \frac{\partial Q}{\partial x}(x, y) \) entonces la ecuación diferencial no es exacta, pero

\[
\frac{1}{P(x, y)} \left[\frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y) \right] = \frac{1}{2y} [1 - 2] = -\frac{1}{2y} = K(y).
\]

Entonces, el factor de integración es

\[
I(y) = e^{\int K(y) \, dy} = e^{\int -\frac{dy}{2y}} = e^{\frac{-2}{2y} \ln|y|} = y^{-1/2} = \frac{1}{\sqrt{y}}.
\]

luego, multiplicando la ecuación diferencial por \(I(y) = \frac{1}{\sqrt{y}} \) se obtiene

\[
\frac{2\sqrt{y}}{P_1} \, dx + \left(\frac{x - \sin \sqrt{y}}{\sqrt{y}} \right) \, dy = 0,
\]

la cual es una ecuación diferencial que es exacta; pues \(\frac{\partial P_1}{\partial y}(x, y) = \frac{1}{\sqrt{y}} = \frac{\partial Q_2}{\partial x}(x, y) \).

Entonces existe \(f(x, y) \) tal que

\[
\nabla f(x, y) = (P_1, Q_1) \iff \frac{\partial f}{\partial x} = P_1 \quad \frac{\partial f}{\partial y} = Q_1.
\]

Luego,

\[
\frac{\partial f}{\partial x} = P_1 = 2\sqrt{y} \Rightarrow f(x, y) = \int 2\sqrt{y} \, dx = f(x, y) = 2\sqrt{y}x + C(y),
\]

y

\[
\frac{\partial f}{\partial y} = Q_1 \Rightarrow \frac{x}{\sqrt{y}} + C'(y) = \frac{x - \sin \sqrt{y}}{\sqrt{y}} \Rightarrow C'(y) = -\frac{\sin \sqrt{y}}{\sqrt{y}}
\]

\[
\Rightarrow C(y) = 2 \cos \sqrt{y}.
\]

Por lo tanto, la solución general implícita es \(2\sqrt{y}x + 2 \cos \sqrt{y} = C \).
Ejemplo 1.33

Resolver $2 \text{sen} \left(y^2\right) \, dx + x \, y \cos \left(y^2\right) \, dy = 0$.

Solución.

Observamos que

$$\frac{dQ}{dx} = y \cos \left(y^2\right) \quad \text{y} \quad \frac{dP}{dy} = 4 \, y \cos \left(y^2\right),$$

por lo que la ecuación diferencial no es exacta; sin embargo,

$$1 \left(\frac{dP}{dy} - \frac{dQ}{dx} \right) = 1 \frac{1}{xy \cos \left(y^2\right)} (4 \, y \cos \left(y^2\right) - y \cos \left(y^2\right)) = \frac{3}{x}.$$

Entonces, el factor de integración es $I(x) = e^{\int \frac{3}{x} \, dx} = e^{3 \ln x} = x^3$. Luego, la nueva ecuación diferencial es

$$2x^3 \text{sen} \left(y^2\right) \, dx + x^4 \, y \cos \left(y^2\right) \, dy = 0,$$

la cual es exacta, pues

$$\frac{dQ}{dx} = 4x^3 \, y \cos \left(y^2\right) = \frac{dP}{dy}.$$

Luego, existe f tal que $\nabla f = F$, es decir

$$\frac{df}{dx} = P = 2x^3 \, \text{sen} \left(y^2\right) \quad \text{y} \quad \frac{df}{dy} = Q = x^4 \, y \cos \left(y^2\right),$$

de donde $f(x, y) = \frac{x^4}{2} \, \text{sen} \left(y^2\right) + C(y)$. Por lo que, derivando respecto de y, tenemos

$$\frac{df}{dy} = x^4 \, y \cos \left(y^2\right) + C'(y) = x^4 \, y \cos \left(y^2\right) \Rightarrow C(y) = C.$$

Así, la solución general está dada por $\frac{x^4}{2} \, \text{sen} \left(y^2\right) = C$.

Ejemplo 1.34

Resolver $(3x e^y + 2y) \, dx + (x^2 e^y + x) \, dy = 0$.

Solución.

Se observa que

$$P(x, y) = 3x e^y + 2y \quad \text{y} \quad Q(x, y) = x^2 e^y + x.$$

Entonces $\frac{dP}{dy} = 3x e^y + 2$, $\frac{dQ}{dx} = 2x e^y + 1$. Así, vemos que la ecuación diferencial no es exacta.

Por lo que,

$$1 \left(\frac{dP}{dy} - \frac{dQ}{dx} \right) = 1 \frac{1}{x(xe^y + 1)} (xe^y + 1) = \frac{1}{x}.$$

Así, tenemos que el factor integrantes es $I(x) = e^{\int \frac{1}{x} \, dx} = x$.

Luego, multiplicando la EDO por x obtenemos

$$(3x^2 e^y + 2xy) \, dx + (x^3 e^y + x^2) \, dy = 0.$$

Vemos que, la EDO resultante es exacta, pues

$$\frac{dP}{dy} = 3x^2 e^y + 2x = \frac{dQ}{dx}.$$
Entonces, existe f tal que $\nabla f = F$; es decir,

\[
\frac{df}{dx} = P = 3x^2 e^y + 2xy \quad y \quad \frac{df}{dy} = Q = x^3 e^y + x^2,
\]

de donde $f(x, y) = x^3 e^y + x^2 y + C(x)$. Luego, derivando respecto de x, tenemos

\[
\frac{df}{dx} = 3x^2 e^y + 2xy + C'(x) = 3x^2 e^y + 2xy \Rightarrow C'(x) = 0.
\]

Así, la solución general implícita es $x^3 e^y + x^2 y = C$.

Ejemplo 1.35

Dada una ecuación diferencial lineal de la forma

\[
\frac{dy}{dx} + p(x) y = q(x),
\]

donde p y q son funciones continuas. Demuestre que la solución general está dada por

\[
y(x) = e^{-\int p(x) dx} \int e^{\int p(x) dx} q(x) dx + C.
\]

Demostración.

Vemos que la ecuación diferencial es equivalente a

\[
\left[p(x) y - q(x) \right] dx + dy = 0.
\]

Entonces, sean

\[
P(x, y) = p(x) y - q(x) \quad y \quad Q(x, y) = 1
\]

Así,

\[
\frac{dQ}{dx} = 0 \quad y \quad \frac{dP}{dy} = p(x).
\]

Luego, tenemos que la EDO no es exacta; sin embargo,

\[
\frac{1}{Q} \left(\frac{dP}{dy} - \frac{dQ}{dx} \right) = \frac{1}{1} \left(p(x) - 0 \right) = p(x),
\]

obteniendo como factor de integración a

\[
\mu(x) = e^{\int p(x) dx}.
\]

Por lo tanto, multiplicando la EDO lineal por el factor de integración, se obtiene

\[
e^{\int p(x) dx} \frac{dy}{dx} + p(x) e^{\int p(x) dx} y = \frac{d}{dx} \left(e^{\int p(x) dx} y \right) = e^{\int p(x) dx} q(x),
\]

luego, integrando

\[
\int d \left(e^{\int p(x) dx} y \right) = \int e^{\int p(x) dx} q(x) dx,
\]

conseguimos el siguiente resultado que demuestra lo pedido

\[
e^{\int p(x) dx} y = \int e^{\int p(x) dx} q(x) dx.
\]

Observación. Si el factor de integración es de la forma $\mu(x, y) = g \left(h(x, y) \right)$. Un factor de integración
Ecuaciones diferenciales de primer orden

1. Ecuaciones diferenciales ordinarias

que solo depende de \(x \) y a través de la función \(h \), es dada por

\[
\mu(x, y) = C \cdot \exp \int \frac{dP}{dQ} - \frac{dQ}{dP} \frac{\partial h}{\partial x} \, dh.
\]

1.2.5 Ecuaciones diferenciales lineales de primer orden

Se dice que una ecuación diferencial de primer orden es lineal, si es de la forma

\[
a_1(x) y' + a_0(x) y = h(x),
\]

donde \(a_1(x) \neq 0 \), para todo \(x \in I \) y \(a_0(x) \), \(h(x) \) son funciones continuas en \(I \).

Dividiendo por \(a_1(x) \), se obtiene la forma estándar

\[
y' + p(x) y = q(x),
\]

donde \(p(x) = \frac{a_0(x)}{a_1(x)} \) y \(q(x) = \frac{h(x)}{a_1(x)} \) son funciones continuas sobre un intervalo \(I \).

Observación. Vemos que si \(q(x) = 0 \), la ecuación (1.5) se convierte en una ecuación de variables separables; así que, aquí vamos a considerar \(q(x) \neq 0 \).

El método usual para resolver la ecuación (1.5) es multiplicar ambos miembros de la ecuación por una función apropiada \(I(x) \), que se conoce como factor integrante, que convierte el miembro de la izquierda de la ecuación (cuando se multiplica por \(I(x) \)) en la derivada de un producto \(I(x) \cdot y \); es decir:

\[
I(x) \left[y' + p(x) y \right] = \frac{d}{dx} \left(I(x) y \right),
\]

donde

\[
I(x) y' + I(x) p(x) y = I(x) y' + y I'(x) \Leftrightarrow I(x) p(x) y = y I'(x) \Leftrightarrow p(x) = \frac{I'(x)}{I(x)}.
\]

Luego, integrando obtenemos

\[
\ln |I(x)| = \int p(x) \, dx + C \Leftrightarrow I(x) = e^{\int p(x) \, dx + C} \Leftrightarrow I(x) = Ke^{\int p(x) \, dx}
\]

donde \(K = e^C \). Como estamos buscando un factor integrante particular, y no el más general, tomamos \(K = 1 \) y utilizamos

\[
I(x) = e^{\int p(x) \, dx}
\]

como factor de integración de (1.5).

Para resolver (1.5). Sin necesidad de memorizar alguna fórmula, llevamos a cabo el siguiente procedimiento:

(i) Calculamos el el factor de integración \(I(x) = \exp \left(\int p(x) \, dx \right) \) de (1.5).

(ii) Multiplicamos la ecuación diferencial (1.5) por el factor de integración.

(iii) Escribimos el lado izquierdo de la ecuación resultante como la derivada del producto de \(y \) con el factor de integración. Y, el lado derecho es una función solo de \(x \).

(iv) Integramos ambos lados de la ecuación de la etapa 3 y resolver la ecuación resultante para \(y \), obteniéndose de esta manera la solución de (1.5).
Ecuaciones diferenciales ordinarias

Ejemplo 1.36

Resolver \(y' + 2xy = 5x \).

Solución.

Tenemos que

\[
p(x) = 2x \quad y \quad q(x) = 5x.
\]

Luego, el factor de integración es

\[
I(x) = e^{\int 2xdx} = e^{x^2}.
\]

Así, si multiplicando a la ecuación diferencial por \(e^{x^2} \), obtenemos

\[
e^{x^2} y' + 2xe^{x^2} y = 5xe^{x^2},
\]

luego, vemos que

\[
\frac{d}{dx} (e^{x^2} y) = 5xe^{x^2}.
\]

Integrando, se tiene el siguiente resultado

\[
e^{x^2} y = \frac{5}{2} e^{x^2} + C
\]

Finalmente, se obtiene la solución general explícita es

\[
y = \frac{5}{2} + C e^{-x^2}.
\]

Ejemplo 1.37

Resolver \(y' - (\tan x)y = \cos x \).

Solución.

Tenemos que el factor de integración es

\[
I(x) = e^{\int -\tan x dx} = e^{\ln |\cos x|} = \cos x;
\]

luego, multiplicando la ecuación diferencial por \(\cos x \), se obtiene

\[
\cos x \cdot y' - (\sec x) y = \cos^2 x.
\]

Por otro lado, vemos que esta última ecuación es equivalente a

\[
\frac{d}{dx} (\cos x \cdot y) = \frac{1 + \cos 2x}{2}.
\]

Finalmente, integrando y despejando, obtenemos la siguiente solución general explícita

\[
y = \frac{1}{\cos x} \left(\frac{1}{2} x + \frac{\sec 2x}{4} + C \right).
\]

Ejemplo 1.38

Resolver \(xy' = y + x^3 + 3x^2 - 2x \).

Solución.

Se observa que la ecuación es equivalente a

\[
y' - \frac{1}{x} y = x^2 + 3x - 2.
\]
Entonces, el factor de integración es \(I(x) = e^{\int \frac{1}{x} \, dx} = e^{-\ln x} = \frac{1}{x} \), luego, multiplicando la ecuación diferencial por \(\frac{1}{x} \) y resolviendo, obtenemos

\[
y' - \frac{1}{x} y = x^2 + 3x - 2 \quad \Rightarrow \quad \frac{1}{x} y' - \frac{1}{x^2} y = x + 3 - \frac{2}{x} \quad \Rightarrow \quad \frac{d}{dx} \left(\frac{1}{x} y \right) = x + 3 - \frac{2}{x}.
\]

Luego, integrando

\[
\int d \left(\frac{1}{x} y \right) = \int \left(x + 3 - \frac{2}{x} \right) \, dx,
\]

se obtiene la siguiente solución general explícita

\[
y = x \left(\frac{x^2}{2} + 3x - 2 \ln x + C \right).
\]

Teorema 1.4: Fórmula de variación de constantes

Si \(p \) y \(q \) son funciones continuas en algún intervalo \(I \), entonces la única solución \(x \) del siguiente problema de valor inicial

\[
\begin{align*}
x'(t) &= p(t) x + q(t) \\
x(t_0) &= x_0
\end{align*}
\]

donde \(t_0 \in I \), \(x_0 \in \mathbb{R} \), es dada por

\[
x(t) = e^{\int_{t_0}^t p(\tau) \, d\tau} x_0 + e^{\int_{t_0}^t p(\tau) \, d\tau} \int_{t_0}^t e^{-\int_{t_0}^s p(\tau) \, d\tau} q(s) \, ds, \quad t \in I.
\]

Prueba.

Observamos que aquí, la función \(f \) definida por \(f(t, x) = p(t) x + q(t) \) es continua sobre \(I \times \mathbb{R} \) y \(f_x(t, x) = p(t) \) es continua sobre \(I \times \mathbb{R} \). Entonces, por el teorema de existencia y unicidad el PVI tiene una solución única.

Ahora, sea

\[
x(t) = e^{\int_{t_0}^t p(\tau) \, d\tau} x_0 + e^{\int_{t_0}^t p(\tau) \, d\tau} \int_{t_0}^t e^{-\int_{t_0}^s p(\tau) \, d\tau} q(s) \, ds, \quad para \ t \in I.
\]

Demostraremos que \(x \) es la solución del PVI sobre el intervalo \(I \).

Notemos que \(x(t_0) = x_0 \). Además, por el teorema fundamental del calculo, se tiene

\[
x'(t) = p(t) e^{\int_{t_0}^t p(\tau) \, d\tau} x_0 + p(t) e^{\int_{t_0}^t p(\tau) \, d\tau} \int_{t_0}^t e^{-\int_{t_0}^s p(\tau) \, d\tau} q(s) \, ds + e^{\int_{t_0}^t p(\tau) \, d\tau} \frac{d}{dt} \int_{t_0}^t e^{-\int_{t_0}^s p(\tau) \, d\tau} q(s) \, ds
\]

\[
= p(t) e^{\int_{t_0}^t p(\tau) \, d\tau} x_0 + p(t) e^{\int_{t_0}^t p(\tau) \, d\tau} \int_{t_0}^t e^{-\int_{t_0}^s p(\tau) \, d\tau} q(s) \, ds + e^{\int_{t_0}^t p(\tau) \, d\tau} e^{-\int_{t_0}^t p(\tau) \, d\tau} q(t)
\]

\[
= p(t) e^{\int_{t_0}^t p(\tau) \, d\tau} x_0 + p(t) e^{\int_{t_0}^t p(\tau) \, d\tau} \int_{t_0}^t e^{-\int_{t_0}^s p(\tau) \, d\tau} q(s) \, ds + q(t)
\]

\[
= p(t) \left[e^{\int_{t_0}^t p(\tau) \, d\tau} x_0 + e^{\int_{t_0}^t p(\tau) \, d\tau} \int_{t_0}^t e^{-\int_{t_0}^s p(\tau) \, d\tau} q(s) \, ds \right] + q(t)
\]

\[
= p(t) x(t) + q(t)
\]

para todo \(t \in I \).
Ejemplo 1.39: Ley de enfriamiento de Newton

Suponga que un objeto tiene una temperatura inicial de 40 grados. Si la temperatura del medio circundante es 70 + 20e^{-2t} grados después de t minutos y la constante de proporcionalidad es k = -2.

Solución.

Aplicamos la ley de enfriamiento de Newton que afirma que la tasa de cambio de la temperatura de un objeto es proporcional a la diferencia entre su temperatura y la temperatura del medio de su entorno.

Sea x(t) la temperatura del objeto en cualquier instante t, T_m = 70 + 20e^{-2t} y x(0) = x_0 = 40 la temperatura inicial, entonces tenemos el problema de valor inicial:

\[
\begin{cases}
 x'(t) = k(x - T_m) = -2(x - 70 - 20e^{-2t}) = -2x + 140 + 40e^{-2t} \\
 x(0) = 40
\end{cases}
\]

Usando la fórmula de variación de constantes con p(t) = -2, q(t) = 140 + 40e^{-2t}, t_0 = 0 y x_0 = 40, obtenemos que la temperatura del objeto después de t minutos es

\[
x(t) = e^{\int_0^t p(\tau) d\tau} x_0 + e^{\int_0^t p(\tau) d\tau} \int_0^t e^{-\int_0^\tau p(\tau) d\tau} q(s) ds
\]

\[
= e^{\int_0^t (-2) d\tau} (40) + e^{\int_0^t (-2) d\tau} \int_0^t e^{\int_0^{\tau} (-2) d\tau} (140 + 40e^{-2s}) ds
\]

\[
= e^{-2t} (40) + e^{-2t} \int_0^t e^{2s} (140 + 40e^{-2s}) ds
\]

\[
= 40e^{-2t} + 20e^{-2t} \int_0^t (7e^{2s} + 2) ds
\]

\[
= 40e^{-2t} + 20e^{-2t} \left[\left. \frac{7e^{2s} + 2s}{2} \right|_0^t \right]
\]

\[
= 40e^{-2t} + 20e^{-2t} \left(\frac{7e^{2t} + 2t}{2} - \frac{7}{2} \right)
\]

\[
= 10(4t - 3)e^{-2t} + 70.
\]

Reducción de ecuaciones no lineales a la forma lineal

La ecuación diferencial

\[y' + p(x) y = q(x) y^n; \] \hspace{1cm} (1.6)

se llama ecuación de Bernoulli. Notamos que si n = 0 la ecuación se convierte en una lineal y si n = 1 en una ecuación de variables separables.

Si multiplicamos a (1.6) por \(y^{-n} \) se tiene que

\[y^{-n} y' + p(x) y^{1-n} = q(x), \]

luego, haciendo \(z = y^{1-n} \), tenemos

\[\frac{dz}{dx} = (1 - n) y^{-n} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{y^n}{1-n} \frac{dz}{dx}. \]

Por lo tanto, se tiene que

\[y^{-n} \cdot \frac{y^n}{1-n} \frac{dz}{dx} + p(x) z = q(x) \Rightarrow \frac{dz}{dx} + (1 - n) p(x) z = (1 - n) q(x) \]
es una ecuación lineal.

Ejemplo 1.40

Resolver \(y' + y = xy^3 \).

Solución.

Hacemos \(z = y^{1-3} = y^{-2} \) ⇒ \(y = \frac{1}{\sqrt{z}} \) y \(\frac{dz}{dx} = -2y^{-3}\frac{dy}{dx} \). Así, tenemos que la ecuación diferencial es equivalente a

\[
\frac{y^3}{2} \frac{dz}{dx} + \frac{1}{\sqrt{z}} = xz^{3/2}
\]

que a su vez es equivalente a

\[
\frac{dz}{dx} - 2z = -2x,
\]

donde esta última ecuación diferencial, es lineal, cuyo factor de integración es

\[
I(x) = e^{\int p(x)dx} = e^{\int(-2)dx} = e^{-2x}.
\]

Luego, si multiplicamos a la ecuación diferencial lineal por \(e^{-2x} \), obtenemos

\[
e^{-2x} \frac{dz}{dx} - 2ze^{-2x} = -2xe^{-2x}.
\]

Se observa que el primer miembro de la ecuación anterior se expresa como

\[
\frac{d}{dx} (e^{-2x} z) = -2xe^{-2x}
\]

Por lo tanto, integrando

\[
e^{-2x} z = \int -2xe^{-2x} \, dx,
\]

se obtiene

\[
\frac{1}{y^2} = x + \frac{1}{2} + Ce^{2x}.
\]

Finalmente, tenemos que la solución general explícita está dada por

\[
y = \frac{1}{\sqrt{x + \frac{1}{2} + Ce^{2x}}}.
\]

1.3 Aplicaciones de las ecuaciones diferenciales

1.3.1 Modelos poblacionales: la ecuación Logística

Sea \(N = N(t) \) el tamaño de una población en el tiempo \(t \) y sea \(r \) la velocidad de crecimiento. El modelo de crecimiento maltusiano (Thomas Malthus, 1766-1834), viene dado por

\[
\frac{dN}{dt} = rN.
\]

De esto se obtiene que

\[
N(t) = Ce^{rt}.
\]

Supongamos que la población inicial es \(N(0) = N_0 \) entonces \(N(0) = C = N_0 \), luego

\[
N(t) = N_0 e^{rt}.
\]
Sin embargo, cuando el crecimiento de la población es restringido por los recursos limitados, una modificación heurística del modelo de crecimiento maltusiano da como resultado la ecuación de Verhulst

\[
\begin{align*}
\frac{dP}{dt} &= kP(P - M) \\
P(0) &= P_0
\end{align*}
\]

La ecuación diferencial es de variable separable, ya que es equivalente a

\[
\frac{dP}{P(P - M)} = kdt
\]

integrandando

\[
\int \frac{dP}{P(P - M)} = \frac{1}{M} \int \left(\frac{1}{P - M} - \frac{1}{P} \right) dP = \int kdt
\]

\[
\frac{1}{M} (\ln|P - M| - \ln|P|) = kt + C_1
\]

\[
\ln \left| \frac{P - M}{P} \right| = kMt + C_2
\]

\[
\frac{P - M}{P} = Ce^{kMt}, \quad C = \pm e^{C_2}
\]

\[
1 - \frac{M}{P} = Ce^{kMt}
\]

\[
\frac{M}{P} = 1 - Ce^{kMt}
\]

\[
P(t) = \frac{M}{1 - Ce^{kMt}}
\]

aplicando la condición inicial \(P(0) = P_0\) tenemos

\[
P(0) = \frac{M}{1 - C} = P_0 \Leftrightarrow C = 1 - \frac{M}{P_0}
\]

reemplazando en la solución general obtenemos

\[
P(t) = \frac{M}{1 - \left(1 - \frac{M}{P_0}\right)e^{kMt}} = \frac{MP_0}{P_0 + (M - P_0)e^{kMt}}
\]

1.3.2 Decrecimiento radiactivo

Cuando en la ecuación de crecimiento poblacional, la tasa de nacimiento es menor que la de mortalidad, la ecuación resulta ser de la forma

\[
\frac{dp}{dt} = -kp
\]

con \(k > 0\). Así, la solución es

\[
p(t) = p_0e^{-kt}
\]

Considerando una muestra de material que contenga \(N(t)\) átomos de cierto isótopo radiactivo en el instante \(t\), se ha observado que una fracción constante de estos átomos radiactivos decaye espontáneamente durante cada unidad de tiempo. Por lo tanto, la muestra se comporta tal como una población con tasa de mortalidad constante y en la que no hay nacimientos. Así, reemplazando \(N(t)\) por \(p(t)\) en la ecuación anterior resulta que

\[
\frac{dN}{dt} = -kN
\]
Aplicaciones de las ecuaciones diferenciales

1. Ecuaciones diferenciales ordinales 39

y su solución es

$$ N(t) = N_0 e^{-kt} \tag{1.7} $$

donde N_0 es el número de átomos radiactivos presentes en la muestra cuando $t = 0$. El valor de la constante de decaimiento k depende del isótopo particular que se está usando. Si k es grande, el isótopo decae con rapidez, mientras que si k es muy pequeño, el isótopo decae con lentitud. Es común especificar la constante de decaimiento en términos de otro parámetro empírico, la vida media del isótopo, pues este parámetro es más conveniente. La vida media τ de un isótopo radiactivo es el tiempo requerido para que decaiga la mitad de su masa. Para determinar la relación entre k y τ se hace $t = \tau$ y $N = \frac{1}{2} N_0$ en la ecuación (1.7) de manera que

$$ \frac{1}{2} N_0 = N_0 e^{-k\tau} $$
y al despejar

$$ \tau = \frac{\ln 2}{k} $$

Ejemplo 1.41

La vida media del carbono radiactivo C^{14} es alrededor de 5700 años. Una muestra de carbón de madera encontrado en cierto lugar resultó tener el 63% del C^{14} de una muestra contemporánea. ¿Cuál es la edad de la muestra?

Solución.

Se sabe que $\tau = 5700$ por lo que $k = \frac{\ln 2}{\tau} = 1.216 \times 10^{-4}$ y como $N = (0.63) N_0$ se tiene que

$$(0.63) N_0 = N_0 e^{-0.0001216\tau}$$
de donde

$$ t = -\frac{\ln (0.63)}{0.0001216} \approx 3800 $$
años.

Ejemplo 1.42

La vida media del carbono catorce (C^{14}) radioactivo es aproximadamente de 5600 años. Se analizó un hueso fosilizado y se encontró que contenía la milésima parte de la cantidad original de C^{14}. Determine la edad del fósil.

Solución.

Sea $M(t)$ la cantidad de carbono catorce en el instante t, entonces la velocidad de desintegración es directamente proporcional a su masa, es decir

$$ M'(t) = kM(t) \Leftrightarrow M(t) = Ce^{kt}, $$
tenemos de la condición del problema que

$$ M(0) = Ce^{k(0)} = C = M_0 \quad y \quad M(5600) = \frac{M_0}{2}, $$
etonces $M(t) = M_0 e^{kt}$, y

$$ M(5600) = M_0 e^{k(5600)} = \frac{M_0}{2} \Rightarrow e^{5600k} = \frac{1}{2} \Rightarrow e^{k} = \left(\frac{1}{2} \right)^{1/5600}.$$

En consecuencia

$$ M(t) = M_0 \left(e^{k} \right)^{t} = M_0 \left(\frac{1}{2} \right)^{\frac{t}{5600}}. $$
Nos piden hallar \(t \) cuando \(M = \frac{M_0}{1000} \), es decir,

\[
\frac{M_0}{1000} = M_0 \left(\frac{1}{2} \right)^{\frac{t}{5600}} \Rightarrow \ln \left(\frac{1}{1000} \right) = \frac{t}{5600} \Rightarrow t = 5600 \times \frac{\ln \left(\frac{1}{1000} \right)}{\ln \left(\frac{1}{2} \right)}
\]

por lo que la edad del fósil es \(t = 55808.4 \) años.

Ejemplo 1.43

Una población crece a razón proporcional a la misma población en cualquier momento \(t \), \(t \) en años. Si dicha población inicial es de 500 habitantes y aumenta 75 habitantes en 10 años. ¿Cuál es la población en 30 años?

Solución.

Sea \(P(t) \) la cantidad de habitantes en el instante \(t \), entonces por condición del problema tenemos que \(P'(t) = kP(t) \); equivalentemente \(\frac{P'(t)}{P(t)} = k \). Integrando obtenemos

\[
\ln |P(t)| = kt + C \Rightarrow P(t) = e^{kt+C}
\]

luego, aplicando la condición inicial se tiene que \(P(0) = 500 = e^C \), por lo tanto \(P(t) = 500e^{kt} \). Además \(P(10) = 575 \), de donde tenemos

\[
P(10) = 500e^{k(10)} = 575 \Rightarrow e^k = \left(\frac{575}{500} \right)^{1/10},
\]

entonces

\[
P(t) = 500 \left(e^k \right)^t = 500 \left(\frac{575}{500} \right)^{t/10}.
\]

Reemplazando se obtiene

\[
P(30) = 500 \left(\frac{575}{500} \right)^{30/10} = 500 (1.15)^3 = 760.44 \approx 760 \text{ habitantes}.
\]

Finalmente se obtiene que la población en 30 años es 760.

1.3.3 **Ley de enfriamiento de Newton**

La ley de enfriamiento de Newton afirma que la tasa de cambio de la temperatura de un objeto es proporcional a la diferencia entre su temperatura y la temperatura del medio de su entorno, es decir,

\[
\frac{dT}{dt} = k(T - T_m)
\]

donde \(k \) es una constante de proporcionalidad.

Ejemplo 1.44

La velocidad de enfriamiento de un cuerpo en el aire es proporcional a la diferencia entre la temperatura \(T \) del cuerpo y la del aire \(25^0C \). Si el cuerpo tarda en enfriarse 40 minutos desde \(90^0C \) a \(70^0C \) ¿cuánto tarda en enfriarse hasta \(50^0C \) ?

Solución.

Sea \(T(t) \) la temperatura del cuerpo en el instante \(t \), y \(T_m = 25^0C \) la temperatura del medio
ambiente, entonces por condición del problema tenemos
\[
\frac{dT}{dt} = k(T - T_m) \iff T(t) = T_m + Ce^{kt} \iff T(t) = 25 + Ce^{kt} \quad \cdots \quad (a)
\]

tenemos de dato que si
\[
t = 0 \implies T = 90^0 \quad \cdots \quad (\beta),
\]
y si
\[
t = 40m. \implies 70^0C \quad \cdots \quad (\gamma),
\]
entonces de \((a)\) y de \((\beta)\) tenemos
\[
90 = T(0) = 25 + Ce^{k(0)} = 25 + C \implies C = 65.
\]
luego \(T(t) = 25 + 65e^{kt}\); también de \((\gamma)\) tenemos
\[
70 = T(40) = 25 + 65e^{k(40)} \iff 45 = 65e^{40k} \iff \frac{9}{13} = e^{40k} \iff k = \ln\left(\frac{9}{13}\right)^{1/40},
\]
por lo tanto \(T(t) = 25 + 65\left(\frac{9}{13}\right)^{t/40}\). Nos piden hallar \(t\) cuando \(T = 50^0\), es decir
\[
50 = 25 + 65\left(\frac{9}{13}\right)^{t/40} \iff \frac{5}{13} = \left(\frac{9}{13}\right)^{t/40} \iff t = \frac{40\ln(5/13)}{\ln(9/13)}.
\]
El cuerpo tiene la temperatura \(50^0C\) a los 103.94 minutos.

1.3.4 Análisis compartimental

El sistema básico de un compartimiento consiste en:

(i) Una función \(x(t)\) que representa la cantidad de una sustancia presente en un compartimento en el instante \(t\).

(ii) La velocidad de entrada a la cual fluye la sustancia al interior del compartimento.

(iii) La velocidad de salida con la cual dicha sustancia abandona el compartimiento.

Como \(\frac{dx}{dt}\) es la razón de cambio de la cantidad de la sustancia presente en el compartimiento con
respecto al tiempo, por la ecuación de continuidad, tenemos que

\[
\frac{dx}{dt} = \text{flujo de entrada} - \text{flujo de salida} = \left(\text{velocidad de entrada} \times \text{concentración de entrada} \right) - \left(\text{velocidad de salida} \times \text{concentración de salida} \right)
\]

donde \(v_e\) es la velocidad de entrada, \(v_s\) la velocidad de salida, \(c_e\) la concentración de entrada y \(c_s\) la concentración de salida.

En problemas de mezclas, a menudo se proporciona la velocidad de entrada, junto con la concentración de la sustancia en dicho fluido. Para calcular la concentración de salida, se debe proporcionar la velocidad de salida de la mezcla de fluidos contenidos en el compartimento y que la concentración se mantenga uniforme en dicho compartimiento.

Entonces utilizamos

1. \(c_s = \frac{x(t)}{V}\), si la velocidad de entrada es igual a la velocidad de salida.
2. \(c_s = \frac{x(t)}{[V + t(v_e - v_s)]}\), si la velocidad de entrada es diferente a la velocidad de salida.

En ambos casos, \(V\) es el volumen inicial del compartimento.

Ejemplo 1.45

Un tanque contiene 1000 L. de una solución compuesta de 100 kg de sal disuelta en agua. Se bombea agua pura dentro del tanque a una razón de 5 l/s, y la mezcla, que se conserva uniforme por agitación, se bombea hacia afuera en la misma proporción. ¿Cuánto tiempo pasará para que queden solamente 10 kg. de sal en el tanque?

Solución.

Sea \(x(t)\) la cantidad de sal en el tanque en el instante \(t\), por condición del problema tenemos:

\[V = 1000, \ x(0) = 100 \text{ kg}, \ v_e = 5 \text{ lit/seg} = v_s, \ c_e = 0\]

\[
\frac{dx}{dt} = v_e c_e - v_s c_s = 5(0) - 5 \left(\frac{x}{1000} \right) = - \frac{x}{200}
\]

Integrando tenemos

\[
\int \frac{dx}{x} = - \frac{1}{200} \int dt \Rightarrow \ln x = - \frac{1}{200} t + K \Rightarrow x(t) = e^{-\frac{t}{200} + K}
\]

como \(x(0) = e^K = 100\). Luego \(x(t) = 100e^{-\frac{t}{200}}\).

Se obtiene, \(x(t) = 100e^{-\frac{t}{200}} = 10 \Rightarrow t = 200 \ln 10 = 460.52\ \text{seg} = 7 \text{ min y 41 seg.}\)

Finalmente, el tanque tendrá solamente 10 kg. de sal a los 7 min y 41 seg.

Ejemplo 1.46

Supongamos que un tanque mezclador contiene 360 galones de agua, en donde se ha disuelto sal. Otra solución de salmuera se bombea al tanque a una tasa de 3 galones por minuto. El contenido se agita perfectamente, y es desalojado a la misma tasa. Si la concentración de la solución que entra es 2 libras/galón. Halle la cantidad de sal en el tanque en cualquier instante \(t\).

Solución.

Sea \(x(t)\) la cantidad de sal en el tanque en el instante \(t\), por condición del problema tenemos:
Aplicaciones de las ecuaciones diferenciales

V = 360, la cantidad inicial de sal en el tanque es \(x_0 = x(0) = 0, v_v = 3 \text{ gal/min} = \nu_s \) y \(c_e = 2 \) libras/galón. Así, tenemos

\[
\frac{dx}{dt} = 3(2) - 3 \left(\frac{x}{360} \right) \Rightarrow \frac{dx}{dt} + \frac{x}{120} = 6.
\]

Se observa que la última EDO es lineal, cuyo factor de integración es \(I = e^{\int \frac{1}{120} dt} = e^{\frac{1}{120} t} \). Luego,

\[
e^{\frac{1}{120} t} \frac{dx}{dt} + \frac{x}{120} e^{\frac{1}{120} t} = 6e^{\frac{1}{120} t}
\]

de donde

\[
e^{\frac{1}{120} t} \cdot x = 720e^{\frac{1}{120} t} + K \Leftrightarrow x(t) = 720 + Ke^{-\frac{t}{120}}
\]

como \(x(0) = 720 + K = 0 \) entonces \(K = -720 \).

Finalmente, la cantidad de sal en el tanque en cualquier instante \(t \) es \(x(t) = 720 \left(1 - e^{-\frac{t}{120}} \right) \).

Ejemplo 1.47

La corriente sanguínea lleva un medicamento hacia el interior de un órgano a razón de \(3 \text{ cm}^3/s \) y sale de él a la misma velocidad. El órgano tiene un volumen líquido de \(125 \text{ cm}^3 \). Si la concentración del medicamento en la sangre que entra en el órgano es de \(0.2 \text{ gr/cm}^3 \). ¿Cuál es la concentración del medicamento en el órgano en el instante \(t \), si inicialmente no había vestigio alguno del medicamento? ¿Cuándo la concentración del medicamento en el órgano será de \(0.1 \text{ gr/cm}^3 \)?

Solución.

Sea \(M(t) \) la cantidad del medicamento en el órgano y en cualquier instante \(t \). Por condición del problema tenemos que \(v_v = 3 \text{ cm}^3/s = \nu_s \), \(V = 125 \text{ cm}^3 \) y \(c_e = 0.2 \text{ gr/cm}^3 \). Por lo tanto,

\[
\frac{dM}{dt} = \nu_v c_e - v_s c_e = \left(3 \text{ cm}^3/\text{seg} \right) \left(0.2 \text{ gr/cm}^3 \right) - \left(3 \text{ cm}^3/\text{seg} \right) \left(\frac{M(t)}{125} \right)
\]

\[
= 0.6 \text{ gr/seg} - \frac{3}{125} M(t) \text{ gr/seg}.
\]

Así, tenemos el PVI

\[
\left\{ \begin{array}{l}
M'(t) + \frac{3}{125} M(t) = 0.6 \\
M(0) = 0
\end{array} \right.
\]

el factor de integración es \(e^{\int \frac{3}{125} dt} = e^{\frac{3}{125} t} \) luego

\[
e^{\frac{3}{125} t} M'(t) + \frac{3}{125} e^{\frac{3}{125} t} M(t) = 0.6 e^{\frac{3}{125} t} \Rightarrow \frac{d}{dt} \left(e^{\frac{3}{125} t} M(t) \right) = 0.6 e^{\frac{3}{125} t}
\]

integrando resulta

\[
e^{\frac{3}{125} t} M(t) = \int 0.6 e^{\frac{3}{125} t} dt = 0.6 \frac{e^{\frac{3}{125} t}}{\frac{3}{125}} + C \Rightarrow M(t) = 0.6 \times \frac{125}{3} + Ce^{-\frac{3}{125} t}
\]

Aplicando la condición inicial \(M(0) = 0 \) implica que \(C = -25 \). Así, la solución particular es

\[
M(t) = 25 - 25e^{-\frac{3}{125} t}.
\]

La concentración del medicamento en el órgano es

\[
C(t) = \frac{M(t)}{125} = \frac{25 - 25e^{-\frac{3}{125} t}}{125} = \frac{1 - e^{-\frac{3}{125} t}}{5},
\]
y la concentración del medicamento en el órgano es de \(0.1 \frac{g}{r/cm^3}\) si
\[
\frac{1 - e^{-\frac{3t}{5}}}{5} = 0.10 \iff 1 - e^{-\frac{3t}{5}} = \frac{1}{2} \iff e^{-\frac{3t}{5}} = \frac{1}{2} \iff t = -\frac{125}{3} \ln \left(\frac{1}{2} \right) = 28.881 \text{ seg.}
\]
Por lo tanto la concentración del medicamento es \(0.1 \frac{g}{r/cm^3}\) a los 28.881 \text{ seg}.

Ejemplo 1.48

Un estanque contiene 10 millones de litros de agua. El estanque tiene un flujo químico de entrada a una razón de 5 millones lit/seg, y la mezcla en el estanque tiene un flujo de salida en la misma razón. La concentración química de entrada del agua varía periódicamente con el tiempo de acuerdo con la expresión \(C_e(t) = 2 + \sin(2t) \text{ gr/lit.}\) Construir un modelo matemático de este proceso de flujo y determinar la cantidad química en el estanque en el instante \(t\).

Solución.

Sea \(Q(t)\) la cantidad del resto químico en el estanque en el instante \(t\), por condición del problema tenemos: \(V = 10^7\), \(Q(0) = 0\) kg, \(v_e = 5 \times 10^6\) lit/seg = \(v_s\)
\[
\frac{dC}{dt} = 5 \times 10^6 (2 + \sin(2t)) - 5 \times 10^6 \left(\frac{Q(t)}{10^7} \right) = 5 \times 10^6 (2 + \sin(2t)) - \frac{1}{2} Q(t)
\]
como la EDO es lineal, cuyo \(FI = e^{\int \frac{1}{2} dt} = e^{\frac{t}{2}}\) entonces
\[
e^{\frac{t}{2}} \frac{dQ}{dt} + \frac{1}{2} e^{\frac{t}{2}} Q(t) = 5 \times 10^6 \left(2e^{\frac{t}{2}} + e^{\frac{t}{2}} \sin(2t)\right)
\]
\[
\iff \frac{d}{dt} \left(e^{\frac{t}{2}} Q(t) \right) = 5 \times 10^6 \left(2e^{\frac{t}{2}} + e^{\frac{t}{2}} \sin(2t)\right)
\]
integrandando
\[
e^{\frac{t}{2}} Q(t) = 5 \times 10^6 \left(2e^{\frac{t}{2}} + e^{\frac{t}{2}} \sin(2t)\right) d\left(e^{\frac{t}{2}} \right) = 5 \times 10^6 \left[4e^{\frac{t}{2}} + \frac{2}{17} e^{\frac{t}{2}} \left(\sin 2t - 4 \cos 2t\right)\right] + C
\]
despejando \(Q(t)\) obtenemos
\[
Q(t) = 5 \times 10^6 \left[4 + \frac{2}{17} \left(\sin 2t - 4 \cos 2t\right)\right] + Ce^{-\frac{t}{2}}
\]
pero \(Q(0) = 5 \times 10^6 \left[4 + \frac{8}{17}\right] + C = \frac{3}{17} \times 10^6 + C = 0\).
Finalmente, la cantidad química en el estanque en el instante \(t\) es
\[
Q(t) = 5 \times 10^6 \left[4 + \frac{2}{17} \left(\sin 2t - 4 \cos 2t\right)\right] - \frac{3}{17} \times 10^6 e^{-\frac{t}{2}}.
\]

Ejemplo 1.49

Supongamos que un tanque mezclador contiene 400 galones de agua, en donde se ha disuelto sal. Otra solución de salmuera se bombea al tanque a una tasa de 4 galones por minuto y con una concentración de 2 libras/galón. El contenido se agita perfectamente, y es desalojado a 2 gal/min. Halle la cantidad \(A(t)\) de sal en el tanque en cualquier instante \(t\).

Indicación: utilice

Concentración de salida = \(\frac{A(t)}{V + (v_e - v_s) t}\) lb/gal.

donde \(V = 400\) galones de agua, \(v_e\) = velocidad de entrada y \(v_s\) = velocidad de salida.
Aplicaciones de las ecuaciones diferenciales

1. Ecuaciones diferenciales ordinarias

Solución.
De la indicación y \(A(0) = 0 \)

\[
\frac{dA}{dt} = 4 \times 2 - 2 \left(\frac{A(t)}{400 + (4 - 2)t} \right) \Rightarrow \frac{dA}{dt} = 8 - \frac{A(t)}{200 + t}
\]

es decir, tenemos la ecuación lineal

\[
\frac{dA}{dt} + \frac{1}{200 + t} A(t) = 8,
\]

cuyo factor de integración es \(FI = e^{\int \frac{dt}{200 + t}} = e^{\ln(200 + t)} = 200 + t \), entonces

\[
(200 + t) \frac{dA}{dt} + A(t) = 8 (200 + t) \Leftrightarrow \frac{d}{dt} \left((200 + t) A \right) = 8 (200 + t)
\]

\[
\Leftrightarrow (200 + t) A = 8 \left(200 t + \frac{t^2}{2} \right) + C
\]

Aplicando la condición inicial se tiene que \(200 A(0) = 0 + C \Rightarrow C = 0 \). Finalmente

\[
A(t) = \frac{8 \left(200 t + \frac{t^2}{2} \right)}{200 + t}.
\]

Ejemplo 1.50

En un tanque hay 20 kg de un pesticida disueltos en 500 litros de agua. Si se bombea a dicho tanque otro pesticida a una razón de 5 lit/min. con una concentración de 2 kg/lit., asumiendo que la solución se mantiene bien, y luego se extrae a razón de 10 lit/min.

(a) ¿Cuánto pesticida queda en el tanque al cabo de media hora?

(b) ¿Cuánto tiempo tardará el tanque en vaciarse?

Solución.

Sea \(x(t) \) la cantidad de pesticida en el tanque en cualquier instante \(t \), \(t \) en minutos. Por condición del problema tenemos que \(v_e = 5 \text{lit/min} \) , \(V = 500 \) y \(c_e = 2 \text{kg/lit} \), \(v_s = 10 \text{lit/min} \) y \(x(0) = 20 \) kg. Luego

\[
\frac{dx}{dt} = v_e c_e - v_s c_s = (5) (2) - (10) \left(\frac{x(t)}{500 + (5 - 10)t} \right) = 10 - \frac{2x(t)}{100 - t},
\]

así tenemos el PVI

\[
\begin{cases}
\frac{dx}{dt} + \frac{2}{100 - t} x(t) = 10 \\
x(0) = 20
\end{cases}
\]

cuyo factor de integración es

\[
e^{\int \frac{2}{100 - t} dt} = e^{-2\ln(100 - t)} = e^{\ln(100 - t)^{-2}} = (100 - t)^{-2} = \frac{1}{(100 - t)^2}
\]

luego

\[
\frac{1}{(100 - t)^2} \frac{dx}{dt} + \frac{2}{(100 - t)^3} x(t) = \frac{10}{(100 - t)^2},
\]

equivalentemente

\[
\frac{d}{dt} \left(\frac{1}{(100 - t)^2} x(t) \right) = \frac{10}{(100 - t)^2}
\]
Ecuaciones diferenciales ordinarias

Integrando resulta
\[
\frac{1}{(100-t)^2} x(t) = \frac{10}{100-t} + C
\]
despejando \(x(t) \) tenemos que la solución general es
\[
x(t) = 10 (100 - t) + \frac{49}{500} (100 - t)^2.
\]

Aplicando la condición inicial \(x(0) = 20 = 10(100) + C(100)^2 \) implica que \(C = -\frac{49}{500} \). De esta manera, la solución particular es
\[
x(t) = 10 (100 - t) - \frac{49}{500} (100 - t)^2.
\]

(a) La cantidad de pesticida en el tanque al cabo de media hora es
\[
x(30) = 700 - \frac{49}{500} (70)^2 = 219.8 k g
\]

(b) El tanque se vaciará cuando
\[
vol(t) = V + t (v_p - v_s) = 500 + (5 - 10) t = 500 - 5 t = 0
\]
El tanque se vaciará en 1 h o r 40 m í n.

1.3.5 Más problemas de aplicaciones

Ejemplo 1.51

Cierta especie aislada de 10 000 individuos se encuentra en un proceso de extinción: disminuye la población con una velocidad proporcional a la raíz cuadrada del número de individuos que hay en cada momento. Si después de un año la población queda reducida a la mitad.

(a) Obtener y resolver la ecuación diferencial que verifica la función \(x(t) \) que representa el número de individuos de la población en el instante \(t \).

(b) Calcule en qué momento se extingue la población.

Solución.
Se debe resolver el problema de valor inicial de variable separable
\[
\begin{cases}
x'(t) = C_1 \sqrt{x(t)} \\
x(0) = 10000, \ x(1) = 5000.
\end{cases}
\]
Integrando tenemos que
\[
\int \frac{dx}{\sqrt{x(t)}} = \int C_1 \, dt \Leftrightarrow 2 \sqrt{x(t)} = C_1 t + C_2
\]
Aplicando las condiciones iniciales tenemos: \(2 \sqrt{x(0)} = 2 \sqrt{10^4} = 200 = C_2 \) y \(2 \sqrt{x(1)} = 2 \sqrt{5000} = 100 \sqrt{5} = C_1 + 200 \) de donde \(C_1 = 100 \sqrt{5} - 200 \).

(a) El número de individuos de la población en el instante \(t \) es \(x(t) = \left((50 \sqrt{5} - 200) t + 100 \right)^2 \).

(b) La población se extingue \(x(t) = 0 \) en \(t = \frac{-100}{50 \sqrt{5} - 200} = 1.1338 \) años.
Ejemplo 1.52

Un modelo para el desarrollo de epidemias asume que el número de personas infectadas cambia en una razón proporcional a el producto del número de personas ya infectadas y el número de personas que son susceptibles, pero aún no infectadas. Si denotamos como \(N \) la población total de personas susceptibles y \(I = I(t) \) el número de infectados en el tiempo \(t \), entonces \(N - I \) es el número de personas que son susceptibles, pero todavía no infectadas.

(a) Resuelva el problema de valor inicial (PVI) generado, si \(I(0) = I_0 \).

(b) Calcule \(\lim_{t \to \infty} I(t) \).

Solución.

(a) De las condiciones del problema, tenemos el PVI

\[
\begin{cases}
\frac{dI(t)}{dt} = rI(N-I) \\
I(0) = I_0
\end{cases}
\]

La ecuación diferencial es de variable separable, ya que es equivalente a

\[
\frac{dI}{I(N-I)} = r \, dt
\]

Integrando

\[
\int \frac{dI}{I(N-I)} = \frac{1}{N} \int \left(\frac{1}{I} + \frac{1}{N-I} \right) dI = \int r \, dt
\]

de donde \(\frac{1}{N} \ln I - \ln (N-I) = rt + k \) de donde \(\ln \left(\frac{I}{N-I} \right) = rNt + C \) aplicando la condición inicial y despejando \(I \), obtenemos

\[
I(t) = \frac{NI_0}{I_0 + (N-I_0) e^{rtN}}
\]

(b) Como \(N > I_0 \geq 0 \) y \(r > 0 \) se obtiene que

\[
\lim_{t \to \infty} I(t) = 0.
\]

Ejemplo 1.53

La sal KNO\(_3\) se disuelve en metanol, y la cantidad \(x(t) \) de gramos de sal en una solución después de \(t \) segundos satisface la ecuación diferencial

\[
\frac{dx}{dt} = 0.8x - 0.004x^2.
\]

(a) ¿Cuál es la cantidad máxima de sal que se disuelve en metanol?

(b) Si \(x = 50 \text{ gr} \) cuando \(t = 0 \), ¿Cuánto tiempo le tomará a una cantidad adicional de 50 gr de sal para disolverse?

Solución.

(a) De

\[
\frac{dx}{dt} = x(0.8x - 0.004x^2) = 0
\]
se obtienen los puntos críticos, \(x = 0 \) y 200; además, tenemos que \(\frac{dx}{dt} \geq 0 \) para \(x \in [0, 200] \). Así, la cantidad máxima de sal que se disuelve en metanol es 200gr.

(b) La ecuación diferencial es equivalente a

\[
\frac{dx}{x(x-200)} = -\frac{1}{250} \, dt
\]

luego integrando, obtenemos

\[
\int \left(\frac{1}{x-200} - \frac{1}{x} \right) dx = -\frac{4}{5} \int dt \Leftrightarrow \ln |x-200| - \ln |x| = -\frac{4}{5} t + C
\]

De la condición inicial para \(t = 0, x = 50 \):

\[
\ln |50-200| - \ln |50| = -\frac{4}{5} \times 0 + C
\]

Se obtiene \(C = \ln 3 \),

\[
\ln|x-200| - \ln|x| = -\frac{4}{5} t + \ln 3
\]

Para que se disuelva 50gr adicionales \(x = 50 + 50 = 100, \)

\[
\ln |100-200| - \ln |100| = -\frac{4}{5} t + \ln 3,
\]

se requiere \(t = \ln 3 \) min.

Ejemplo 1.54

En un modelo macroeconómico \(C(t), I(t) \) y \(Y(t) \) designan respectivamente consumo, inversión y renta nacional de un país en el instante \(t \). Supongamos que

\[
C(t) + I(t) = Y(t), \quad I(t) = kC'(t) \quad \text{y} \quad C(t) = aY(t) + b, \quad \text{para todo} \quad t
\]

donde \(a, b \) y \(k \) son constantes positivas, \(a > 1 \).

(a) Demostrar que la ecuación diferencial para \(Y(t) \) es

\[
Y'(t) = \frac{1-a}{ka} Y(t) - \frac{b}{ka}
\]

(b) Resolver la ecuación diferencial de la parte a.)

Solución.

(a) Utilizando las relaciones del problema tenemos que

\[
Y(t) = C(t) + I(t) = (aY(t) + b) + kC'(t) = (aY(t) + b) + kaY'(t)
\]

de donde se obtiene la ecuación diferencial:

\[
Y'(t) = \frac{1-a}{ka} Y(t) - \frac{b}{ka}.
\]
(b) La ecuación diferencial es lineal, cuyo factor de integración es

\[FI = e^{\int \frac{a-1}{ka} \, dt} = e^{\left(\frac{a-1}{ka}\right) t} = \exp\left(\frac{a-1}{ka}\right) t \]

luego, multiplicamos por el factor de integración, obteniéndose

\[e^{\left(\frac{a-1}{ka}\right) t} Y'(t) + \frac{a-1}{ka} e^{\left(\frac{a-1}{ka}\right) t} Y(t) = -\frac{b}{ka} e^{\left(\frac{a-1}{ka}\right) t} \]

equivalentemente

\[\frac{d}{dt} \left(e^{\left(\frac{a-1}{ka}\right) t} Y(t) \right) = -\frac{b}{ka} e^{\left(\frac{a-1}{ka}\right) t} \]

enseguida integramos ambos miembros obteniéndose

\[e^{\left(\frac{a-1}{ka}\right) t} Y(t) = \frac{b}{1-a} + C_1 e^{\left(\frac{1-a}{ka}\right) t} \]

donde \(C_1 \) es la constante de integración. Despejando \(Y(t) \) se obtenemos

\[Y(t) = \frac{b}{1-a} + C_1 e^{\left(\frac{1-a}{ka}\right) t} \]

Ejemplo 1.55

Sean la demanda

\[Q_d = \alpha - \beta p(t) - \eta \frac{dp(t)}{dt} \]

y la oferta

\[Q_s = \delta p(t), \quad \alpha, \beta, \eta, \delta > 0 \]

suponiendo el mercado es perfecto en cualquier instante \(t \).

(a) Calcule la trayectoria temporal \(p(t) \) (solución general), y

(b) determine \(\lim_{t \to \infty} p(t) \), interprete el resultado.

Solución.

(a) Por condición del problema \(Q_d = Q_s \) de donde tenemos

\[\alpha - \beta p(t) - \eta \frac{dp(t)}{dt} = \delta p(t) \iff \eta \frac{dp(t)}{dt} = (\beta + \delta) p(t) = \alpha \]

luego \(\frac{dp(t)}{dt} + \left(\frac{\beta + \delta}{\eta}\right) p(t) = \frac{\alpha}{\eta} \) EDO lineal, cuyo factor de integración es

\[I(t) = e^{\int \frac{\beta + \delta}{\eta} \, dt} = e^{\frac{\beta + \delta}{\eta} t} \]

\[e^{\frac{\beta + \delta}{\eta} t} \frac{dp(t)}{dt} + \left(\frac{\beta + \delta}{\eta}\right) e^{\frac{\beta + \delta}{\eta} t} p(t) = \frac{\alpha}{\eta} e^{\frac{\beta + \delta}{\eta} t} \]

entonces

\[\frac{d}{dt} \left(e^{\frac{\beta + \delta}{\eta} t} p(t) \right) = \frac{\alpha}{\eta} e^{\frac{\beta + \delta}{\eta} t} \]
integrando obtenemos $e^{\beta t} p(t) = \frac{\alpha}{\eta} \int e^{\beta t} dt = \frac{\alpha e^{\beta t}}{\beta + \delta} + C$. Finalmente, el precio es

$$p(t) = \frac{\alpha}{\beta + \delta} + Ce^{\left(\frac{\beta + \delta}{\eta}\right)t}.$$

(b) Como $\alpha, \beta, \eta, \delta > 0$ se obtiene

$$\lim_{t \to \infty} p(t) = \lim_{t \to \infty} \left(\frac{\alpha}{\beta + \delta} + Ce^{\left(\frac{\beta + \delta}{\eta}\right)t}\right) = \frac{\alpha}{\beta + \delta}.$$

Con el tiempo el precio $p(t)$ se acerca a la asíntota $p = \frac{\alpha}{\beta + \delta}$.

Ejemplo 1.56

Supongamos que la tasa de incremento en el costo y de elaborar un pedido y supervisarlo, a medida que crece la magnitud (o extensión del pedido) a surtir, es igual a la razón de la suma de los cuadrados del costo y la magnitud dividida entre el doble del producto del costo y la extensión o tamaño del pedido, es decir

$$\frac{dy}{ds} = \frac{s^2 + y^2}{2sy}.$$

Determinar la relación entre el costo de elaborar y supervisar un pedido y el tamaño del pedido si $y = 3$ cuando $s = 1$.

Solución.

La ecuación diferencial es homogénea, por lo tanto, sea $y = us$ entonces $\frac{dy}{ds} = u + s \frac{du}{ds}$. Luego

$$\frac{dy}{ds} = \frac{s^2 + y^2}{2sy} \iff u + s \frac{du}{ds} = \frac{s^2 + u^2 s^2}{2s(us)} = \frac{1 + u^2}{2u}$$

de donde

$$\frac{du}{ds} = \frac{1 - u^2}{2u} \iff 2u du = \frac{2udu}{u^2 - 1} = - \frac{ds}{s}$$

integrando la última expresión obtenemos

$$\ln|u^2 - 1| = - \ln s + C$$

regresando a la variable original

$$\ln\left|\frac{y^2}{s^2} - 1\right| = - \ln s + C$$

De esto se obtiene

$$\left|\frac{y^2}{s^2} - 1\right| = e^C$$

ó

$$y^2 = (s + k) s.$$

Aplicando la condición inicial, para $s = 1, y = 9$:

$$9^2 = (1 + k) 1,$$

se obtiene $k = 80$, reemplazando y despejando

$$y = + \sqrt{(s + 80) s},$$

se elige el signo positivo por la condición inicial $y(1) = 9 > 0$.

Ejemplo 1.57: Secreción de hormonas

Con frecuencia, la secreción de hormonas en la sangre es una actividad periódica. Si una hormona se secreta en ciclo de 24 horas, entonces la razón de cambio del nivel de la hormona en la sangre se puede representar mediante el problema de valor inicial:

\[
\begin{align*}
\frac{dx}{dt} &= \alpha - \beta \cos \left(\frac{\pi t}{12} \right) - kx \\
x(0) &= x_0,
\end{align*}
\]

donde \(x(t)\) es la cantidad de la hormona en la sangre en el instante \(t\), \(\alpha\) es la razón promedio de secreción, \(\beta\) es la cantidad de variación diaria en la secreción y \(k\) es una constante positiva que refleja razón con la que el cuerpo elimina la hormona de la sangre. Si \(\alpha = 1 = \beta\), \(k = 2\) y \(x_0 = 10\), halle \(x(t)\).

Solución.
Se trata de resolver el problema lineal

\[
\begin{align*}
\frac{dx}{dt} + 2x &= 1 - \cos \left(\frac{\pi t}{12} \right) \\
x(0) &= 10,
\end{align*}
\]

cuyo factor de integración es \(e^{\int 2 dt} = e^{2t}\). Luego

\[
\begin{align*}
e^{2t} \frac{dx}{dt} + 2e^{2t}x &= e^{2t} - e^{2t} \cos \left(\frac{\pi t}{12} \right) \\
\iff e^{2t}x(t) &= e^{2t} - e^{2t} \cos \left(\frac{\pi t}{12} \right) + C \\
\iff x(t) &= \frac{1}{2} - \frac{1}{\pi^2 + 576} \left(288 \cos \left(\frac{\pi t}{12} \right) + 12 \pi \sen \left(\frac{\pi t}{12} \right) \right) + C.
\end{align*}
\]

Pero

\(x(0) = \frac{1}{2} - \frac{288}{\pi^2 + 576} + C = 10 \Rightarrow C = \frac{19}{2} + \frac{288}{\pi^2 + 576}\)

Entonces la cantidad de la hormona en la sangre en el instante \(t\), esta dado por

\[
x(t) = \frac{1}{\pi^2 + 576} \left(288 \cos \left(\frac{\pi t}{12} \right) + 12 \pi \sen \left(\frac{\pi t}{12} \right) \right) + 10 + \frac{288}{\pi^2 + 576}.
\]

Ejemplo 1.58

Suponga que una célula está suspendida en una solución que contiene un soluto cuya concentración constante es \(C_s\). La célula tiene un volumen constante \(V\) y el área de su membrana permeable es la constante \(A\). Según la ley de Fick, la rapidez de cambio de su masa \(m\) (la del soluto) es directamente proporcional al área \(A\) y a la diferencia \(C_s - C(t)\), donde \(C(t)\) es la concentración del soluto en el interior de la célula en cualquier tiempo \(t\). Determine \(C(t)\), si \(m = VC(t)\) y \(C(0) = C_0\).

Solución.
De las condiciones del problema tenemos que \(m'(t) = kA(C_s - C(t))\) y \(m'(t) = VC'(t)\) de don-
de

\[VC'(t) = kA(C_s - c(t)) \Leftrightarrow \frac{C'(t)}{C_s - C(t)} = \frac{kA}{V} \]

integrando obtenemos

\[\int \frac{C'(t)}{C(t) - C_s} = -kA \int \frac{d}{V} \Rightarrow \ln|C(t) - C_s| = -\frac{kA}{V} t + E \]

donde \(E \) es la constante de integración. Despejando \(C(t) \) se sigue que

\[C(t) = F \exp\left(-\frac{kA}{V} t\right), \quad \text{donde } F = \pm e^E \]

Finalmente, aplicando la condición inicial tenemos \(C(0) = F = C_0 \), así que la concentración del soluto es \(C(t) = C_0 \exp\left(-\frac{kA}{V} t\right) \).

Ejemplo 1.59

Cuando una gota de lluvia cae, su tamaño aumenta, y su masa por consiguiente es en función de \(t \), \(m = m(t) \). La razón de cambio de la masa es \(km(t) \), donde \(k \) es una constante positiva. Cuando aplicamos la segunda ley de Newton del movimiento llegamos a \((mv)' = gm\), en la cual \(v \) es la velocidad de caída de la gota y \(g \) es la aceleración de la gravedad. Determinar la velocidad terminal de la gota, esto es, \(\lim_{t \to +\infty} v(t) \).

Solución.

Del enunciado del problema tenemos las relaciones

\[m'(t) = km(t) \quad \text{(a)} \quad \text{y} \quad (mv)' = gm \quad \text{(b)}, \]

de la ecuación (b) obtenemos

\[m'(t) \cdot v + m(t) \cdot v' = gm \]

luego reemplazando (a) en la última expresión conseguimos

\[km(t) \cdot v + m(t) \cdot v' = g \cdot m(t) \]

simplificando la masa \(m(t) \) obtenemos la ecuación lineal

\[v'(t) + kv(t) = g, \]

cuyo factor de integración es

\[I(t) = e^{\int p(t) dt} = e^{\int k dt} = e^{kt}, \]

luego, multiplicando la ecuación lineal por \(e^{kt} \), obtenemos

\[e^{kt} v' + ke^{kt} v = ge^{kt} \Leftrightarrow \frac{d}{dt} \left(e^{kt} \cdot v\right) = ge^{kt} \]

enseguida, integrando ambos miembros en la última expresión obtenemos

\[e^{kt} \cdot v = \int ge^{kt} dt = \frac{g}{k} e^{kt} + C \Leftrightarrow v(t) = \frac{\frac{g}{k} e^{kt} + C}{e^{kt}} = \frac{g}{k} + \frac{C}{e^{kt}}. \]

Finalmente,

\[\lim_{t \to +\infty} v(t) = \lim_{t \to +\infty} \left(\frac{\frac{g}{k} + \frac{C}{e^{kt}}}{e^{kt}}\right) = \frac{g}{k} + 0 = \frac{g}{k} \]

ya que \(k > 0 \).
1. Resolver las siguientes ecuaciones diferenciales de variables separables.

 a) \(\sin x = y \ln y \)
 b) \(y' \ln x = y \)
 c) \(\frac{dv}{dx} = \frac{1-4v^2}{3v} \)
 d) \(xy'y' = 1-x^2 \)
 e) \(\sin \theta \cdot dr = 2r \cos \theta d\theta \)
 f) \(x(\ln x + x)(y^2 - y - 2) \, dx - y^2 \, dy = 0 \)
 g) \(y \sin x \cdot e^{\cos x} \, dx + y^{-1} \, dy = 0 \)
 h) \(\frac{dy}{dx} = y^3(15 - x\cos x) \)
 i) \(\frac{dy}{dx} = \frac{xy + 2y - x - 2}{xy - 3y + x - 3} \)
 j) \((xy^2e^x - xe^x + 2y^2 - 2) \, dx + (y^2 - 1) \ln y + y^2 \, dy = 0 \)
 k) \(4\sqrt{x} \, dx - (6\cos^2 y + 2x^{3/2} \cos^2 y + 3 + x^{3/2}) \, dy = 0 \)
 l) \(\frac{dy}{dx} = -\frac{xy^2 - y^2 + x - 1}{x^2y - 2xy + x^2 + 2y - 2x + 2} \)

2. Resolver las siguientes ecuaciones diferenciales homogéneas o reducibles a homogéneas.

 a) \((xy + y^2) \, dx - x^2 \, dy = 0 \)
 b) \(\frac{dy}{dx} = \frac{x^2 - y^2}{3xy} \)
 c) \(x(x+y)^2 \, y' = y(x^2 + xy + y^2) \)
 d) \(xyy' = y^2 + x\sqrt{4x^2 + y^2} \)
 e) \(x(x+y)^2 \, y' = y(x^2 + xy + y^2) \)
 f) \(\frac{dy}{dx} = \frac{x^4 + 3x^2y^2 - y^4}{x^3y} \)
 g) \(\frac{dy}{dx} = \frac{2y - x + 5}{2x - y - 4} \)
 h) \(\frac{dy}{dx} = \frac{x + y - 6}{x - y + 2} \)
 i) \(\frac{dy}{dx} = \frac{-4x + 3y + 15}{2x + y + 7} \)
 j) \(2(x - y + 3) \, dx + (3x - y - 1) \, dy = 0 \)

3. Use el cambio de variable \(y = ux \), para resolver

 a) \(y' = \frac{y}{x} + \tan \frac{y}{x} \)
 b) \(y' = \frac{y}{x}(1 + \ln y - \ln x) \)
 c) \(y' = \frac{y}{x} + \frac{x}{y \arctan(y/x)} \)
 d) \(y' = \frac{2xy e^{(x/y)^2}}{y^2 + y^2 e^{(x/y)^2} + 2x^2 e^{(x/y)^2}} \)

4. Use la sustitución \(y = vx^2 \), para resolver \(\frac{dy}{dx} = \frac{2y}{x} + x \cos \left(\frac{y}{x^2} \right) \).

5. Resolver

 a) \(y' = (2x + y + 10)^{1/2} \)
Ecuaciones diferenciales ordinarias

1. Ecuaciones diferenciales ordinarias

b) \(\frac{dy}{dx} = 2 - (x - y - 10)^{1/3} \)
c) \((y^3 + 4e^x y) dx + (2e^x + 3y^2) dy = 0 \)
d) \(y' = \frac{y}{x + \sqrt{xy}}, \quad x, y > 0 \)
e) \([2\cos(2x + y) - x^2] dx + [\cos(2x + y) + e^y] dy = 0 \)
f) \(5x^4 (3y + 1) dx + [x^5 + y^4 (16y + 5)] dy = 0 \)
g) \((\cos x + 2\sin x) dx - dy = 0 \)
h) \((2x + 2xy^2) dx + (x^2y + 2y + 3y^3) dy = 0 \)
i) \(\frac{2}{x} y'y + (x - 1)y^2 = x^2 e^x \)
j) \(2xye^x (2x^2 y) + 3x^2) dx + x^2 \sin (2x^2 y) dy = 0 \)

6. Resolver las siguientes ecuaciones de Bernoulli

a) \((xy^3 + \ln x) dx = y^2 dy \)
b) \(y' + \frac{y}{x} = x\sqrt{y} \)
c) \(2xy' + (x - 1)y^2 = x^2 e^x \)
d) \(2xy' = 10x^3y^5 + y \)
e) \(y' - y = x^3\sqrt{y} \)
f) \(y' + x^{-1}y = x^{-1}y^2 \)
g) \(yy' - 2y^2 = e^x \)
h) \(y' + 3\frac{y}{x} = x\sqrt{y^3} \)

7. Resolver las siguientes ecuaciones diferenciales exactas

a) \(e^y dx + (xe^y - 2y) dy = 0 \)
b) \(3x^2 - 2x + 3y + (3x - 2y) y' = 0 \)
c) \(y - e^x \cos y + (x + e^x \sin y) y' = 0 \)
d) \(e^y - \frac{y^2}{2} \cos x + (e^y - y \sin x) y' = 0 \)
e) \(\ln y + 3y^2 + \left(\frac{x}{y} + 6xy\right) \frac{dy}{dx} = 0 \)
f) \(\frac{1}{y} + 2\frac{y}{x^3} = \left(\frac{x}{y^2} + \frac{1}{x^2}\right) \frac{dy}{dx} \)

8. Encontrar los factores integrantes y luego resolver los siguientes problemas de valor inicial

a) \(2dx + \sec x \cos ydy = 0; \quad y(0) = 0 \)
b) \(2\tan ydx + \cos ydy = 0; \quad y(0) = \frac{\pi}{2} \)
c) \(2x^2 dx - 3xy^2 dy = 0; \quad y(1) = 0 \)
d) \((2 + xy) dx + 2xydy; \quad y(3) = \sqrt{2} \)

9. Resolver los siguientes problemas de valores iniciales
Problemas Propuestos

1. **Ecuaciones diferenciales ordinarias**

 \[
 \begin{aligned}
 a) \quad & \left\{ \begin{array}{l}
 \left(x \sqrt{1 + x^2} \sin x - xy \right) dx - \left(1 + x^2 \right) dy = 0 \\
 y(0) = 5
 \end{array} \right.
 \\
 b) \quad & \left\{ \begin{array}{l}
 y' - y \cot x = 2x - x^2 \cot x \\
 y\left(\frac{\pi}{2} \right) = \frac{\pi^2}{4} + 1
 \end{array} \right.
 \end{aligned}
 \]

10. Resolver las siguientes ecuaciones diferenciales lineales que satsface la condición inicial especificada

 \[
 \begin{aligned}
 a) \quad & \frac{dy}{dx} - \frac{y}{x-1} = x, \quad y(1) = 0 \\
 b) \quad & x^3 y' + 2y = e^{1/x^2}, \quad y(1) = e \\
 c) \quad & \frac{dy}{dx} - \frac{y}{x} = xe^x, \quad y(1) = e - 1 \\
 d) \quad & \frac{dr}{d\theta} + r \tan \theta = \sec \theta; \quad r(0) = 0 \\
 e) \quad & y' + y \tan x = \sec x + \cos x; \quad y(0) = 1 \\
 f) \quad & \sin x \cdot y' + y \cos x = x \sin x; \quad y\left(\frac{\pi}{2} \right) = 2
 \end{aligned}
 \]

11. En el año 1790 la población de Estados Unidos era de 4 millones, y en el año 1800 de 5 millones. Usando el modelo exponencial, ¿qué población tenía el país en dichos años?

 \[
 \begin{aligned}
 a) \quad & \text{La población de Estados Unidos en función del tiempo.} \\
 b) \quad & \text{La población de Estados Unidos en el año 2000.}
 \end{aligned}
 \]

12. Si hay inicialmente 50 gr de una sustancia radioactiva y al cabo de 3 días quedan solamente 10 gr, ¿qué porcentaje de la cantidad original queda al cabo de 4 días?

 Sugerencia. Suponga que la rapidez de desintegración de una sustancia radioactiva es proporcional a la cantidad de la sustancia presente.

13. En 1970, el departamento de Recursos Naturales arrojó en un lago 1000 ejemplares de una especie de pez híbrido. En 1977 se calculó que la población de esta especie en el lago era de 3000. Usando el modelo exponencial, para el crecimiento de la población, calcule la población de estos peces en el lago en 1980. ¿Cuál sería el cálculo correspondiente a 1991?

14. **Crecimiento de poblaciones.** En la predicción del crecimiento de una población, los demógrafos tienen en cuenta las tasas de nacimientos y las tasas de defunciones además de la diferencia entre las tasas de inmigración y emigración. Sea \(P \) la población en el tiempo \(t \) y sea \(N \) el crecimiento por unidad de tiempo resultante de la diferencia entre inmigración y emigración. El ritmo de crecimiento de la población viene dado por

 \[
 \frac{dP}{dt} = kP + N, \quad N \text{ es constante;}
 \]

 resolver esta ecuación diferencial con el fin de hallar \(P \) en función de \(t \), si en \(t = 0 \) el tamaño de la población era \(P_0 \).

15. A un objeto de masa \(m \) se aplica una velocidad inicial dirigida hacia abajo \(v_0 \), y se le permite caer bajo la influencia de la gravedad. Suponiendo que la fuerza gravitacional es constante y que la fuerza debido a la resistencia del aire es proporcional a la velocidad del objeto, determine la ecuación de la velocidad de movimiento de dicho objeto.
16. Después que se suspendió la publicidad de cierta película el primer día de exhibición, la asistencia decreció a una tasa proporcional a su tamaño. Si la asistencia del primer día de exhibición fue de 5000 espectadores y la asistencia del tercer día fue de 2000, cuál es la asistencia esperada para el sexto día?

17. Al año de usar un automóvil, su tasa de depreciación en cualquier momento es proporcional a su valor en ese tiempo. Si un automóvil se compró el 01 de marzo de 1993, y sus valores el 01 de marzo de 1994 y de 1995 fueron de $7000 y $5800, respectivamente, cuál es el valor esperado para el 01 de marzo de 1999?

18. En cierto cultivo de bacterias, donde la tasa de crecimiento es proporcional al número de bacterias presentes, el número se triplica en 1 hora. Si al final de 4 horas se tienen 10 millones de bacterias, cuántas bacterias se tuvieron inicialmente?

19. La acción de una encima sobre una substancia viene dada por el problema de valor inicial

\[
\begin{align*}
\frac{dy}{dt} &= y - 5 \ln t \\
y(1) &= 6
\end{align*}
\]

siendo \(y(t)\) la cantidad de substancia (substrato) presente en el momento \(t\) que está siendo transformada por la enzima. Halle \(y(t)\).

20. La ecuación logística con emigración es dada por el problema de valor inicial

\[
\begin{align*}
\frac{dP}{dt} &= P(1 - \alpha) - \beta, \quad \alpha > 0 \\
P(0) &= P_0
\end{align*}
\]

donde \(\alpha, \beta\) son constantes positivas. Resolver dicho problema de valor inicial.

21. Considere el modelo de deuda de Domar

\[
\begin{align*}
\frac{dD}{dt} &= \alpha y(t), \quad \alpha > 0 \\
\frac{dy}{dt} &= \beta, \quad \beta > 0 \\
y(0) &= y_0, \quad D(0) = D_0
\end{align*}
\]

donde \(D\) es la deuda nacional y, \(y\) es el ingreso nacional (ambas variables son endógenas). Obtenga \(D\) y \(y\) como funciones del tiempo y calcule \(\lim_{t \to \infty} \frac{D(t)}{y(t)}\), interprete el resultado.

22. Considere el modelo

\[
\begin{align*}
\frac{dw}{dt} &= \frac{1}{\alpha y(t)} + ke^{\beta t}, \\
\frac{dy}{dt} &= \beta y(t), \\
w(0) &= w_0, \quad y(0) = y_0 \\
\beta > 0, \quad a > \frac{k}{\beta y_0}
\end{align*}
\]

donde \(w\) es el consumo per cápita de productos de trigo y, \(y\) es el ingreso per cápita. Obtenga \(w\) y \(y\) como funciones del tiempo y determine el límite, cuando \(t \to \infty\), de la razón del consumo per cápita de trigo al ingreso per cápita.
23. La **ley de acción de la masa** establece que bajo una temperatura constante, la velocidad de una reacción química es proporcional al producto de las concentraciones de los reactivos. Una reacción bimolecular \(A + B \rightarrow M \) combina \(a \) moles por litros de una sustancia \(A \) y \(b \) moles de una sustancia \(B \). Si \(y(t) \) es el número de moles por litro que ya han reaccionado después del tiempo \(t \), la rapidez de reacción es:

\[
\frac{dy}{dx} = k(a - y)(b - y).
\]

Resolver esta ecuación, suponiendo \(a \neq b \).

24. El entierro es un problema importante en el ciclo global del carbono - la materia orgánica en el fondo marino se va desgastando, pero al mismo tiempo, también se está enterrando bajo nuevos sedimentos. Lo que se entierra es eliminado de la interacción con la columna de agua y, finalmente, se transformó en combustibles fósiles. Lo que queda enterrado, no es una fracción constante de la materia orgánica, pero con un espesor constante de sedimentos, o un volumen constante (en sentido estricto, esta suposición es válida si la concentración de la materia orgánica en la columna de agua no es despreciable). El entierro de un recurso, en este caso de carbono, se puede considerar como una entrada negativa. Si suponemos que la materia orgánica en los sedimentos del fondo marino se mezcla bien y nos olvidamos de entradas adicionales, entonces se puede modelar la tasa de pérdida de una determinada cantidad de materia orgánica ya en los sedimentos del fondo marino como:

\[
\frac{dC}{dt} = -kC - B
\]

a) Resolver esta ecuación por separación de variables para \(C(t) \).

b) ¿Cuál es el límite de \(C(t) \) cuando \(t \to \infty \)? ¿Por qué es un número negativo?

c) Obtenga una expresión para el tiempo que tarda para \(C(t) \) igual a 0.

25. Un tanque contiene 200 gal. de agua con los que están disueltas 40 lb. de sal. Al tanque empieza a fluir 5 galones de salmuera por minuto, cada una de las cuales contiene 2 lb. de sal disuelta, la mezcla dentro del tanque se mantiene bien agitada, y fluye hacia el exterior del tanque a la misma velocidad. ¿Cuál es la cantidad de sal en el tanque en el instante \(t \)?

26. Supongamos que un tanque mezclador contiene 360 galones de agua, en donde se ha disuelto sal. Otra solución de salmuera se bombea al tanque a una tasa de 3 galones por minuto. El contenido se agita perfectamente, y es desalojado a la misma tasa. Si la concentración de la solución que entra es 2 libras/galón. Halle la cantidad de sal en el tanque en cualquier instante \(t > 0 \).

27. Un tanque contiene 150 litros de agua donde se han disuelto 30gr de sal y le entran 4lit/min de solución con 2 gr de sal por litro; bien mezclado, de él sale líquido con la misma rapidez.

a) Halle la cantidad \(C(t) \) de gramos de sal que hay en el tanque en cualquier instante \(t \).

b) Resuelva el problema (a), suponiendo que entra agua pura.

28. Dado un tanque que contiene 800 \(L \) de agua, dentro del cual una solución salada de salmuera empieza a fluir a una velocidad constante de 5 \(L/min \). La solución dentro del tanque se mantiene bien agitada y fluye hacia el exterior del tanque a una velocidad de 4 \(L/min \). Si la concentración de sal en la salmuera que entra en el tanque es de 1 \(kg/L \), ¿cuál es la cantidad de sal en el tanque en cualquier instante \(t \)?

29. Un lago que tiene un volumen fijo \(V \) contiene una cantidad \(Q \) contaminante. Al tiempo cero, la fábrica (o fábricas responsable(s) del contaminante instala un sistema para eliminar casi todo el contaminante de las aguas de desecho que se vierten en el lago.
a) Suponga que hacia el lago fluye agua dulce a una velocidad \(r \) y que el agua del lago fluye hacia afuera del mismo a la misma velocidad. Determine la ecuación diferencial para la cantidad contaminante.

b) Resuelva la ecuación diferencial y aplique la condición inicial para obtener una fórmula para \(Q(t) \) con \(r, V \) y \(Q \) como parámetros.

30. La siguiente ecuación describe la forma más simple de crecimiento restringido de algunas especies y puede utilizarse para describir el crecimiento de un pez:

\[
\begin{align*}
 y'(t) &= k(a - y(t)) \\
 y(0) &= 10,
\end{align*}
\]

donde \(y(t) \) representa la longitud del pez en el instante \(t \) y \(k, a \) son constantes positivas. Si \(a = 20 cm \) y \(k = 3 \):

Calcule el problema de valor inicial.

31. Una población crece de acuerdo al modelo

\[
\begin{align*}
 y'(t) &= \left(\frac{1}{5} - \frac{1}{t+1}\right) y(t) \\
 y(0) &= 12, \quad t \text{ en años.}
\end{align*}
\]

a) Calcule la expresión \(y(t) \) que nos da la población en el instante \(t \).

b) Halle el instante en el que la población es mínima y cuántos individuos la componen en ese momento.

32. Suponga que un alumno es portador del virus de la gripe y regresa a su escuela donde hay 1000 estudiantes. Si se supone que la rapidez con que se propaga el virus es proporcional, no sólo a la cantidad \(x \) de alumnos infectados sino también a la cantidad de alumnos no infectados, determine la cantidad de alumnos infectados seis días después si se observa que a los cuatro días \(x(4) = 50 \).

33. Al analizar el efecto de la publicidad en las ventas de un producto, se puede extraer el siguiente modelo de trabajo realizado por los economistas Vidale y Wölfd:

\[
\frac{dS}{dt} + \left(\frac{rA}{M} + \lambda\right) S = rA, \quad r y \lambda \text{ son constantes positivas,}
\]

donde \(S = S(t) \) es la cifra de ventas, \(A = A(t) \) representa el volumen de publicidad, \(M \) es el nivel de saturación de un producto (el límite de ventas que se puede alcanzar en la práctica), y Obviamente la solución de esta ecuación lineal depende de la forma de la función de publicidad

A. Resuelva la ecuación diferencial, si \(A(t) = \)

\[
\begin{align*}
 5, & \text{ para } 0 < t < T \\
 0, & \text{ para } t > T
\end{align*}
\]

34. Propagación de una epidemia. Sea \(N(t) \) el número de personas de una población susceptible \(N_s \) que están infectados por una determinada enfermedad en \(t \) días después del inicio de una epidemia. La ecuación diferencial que investiga el modelo es

\[
\frac{dN}{dt} = k(N_s - N)(N - m)
\]
1. Ecuaciones diferenciales ordinarias

Problemas Propuestos

donde $k > 0$ y m son constantes, con $0 < m < N_s$. Sea m el límite epidémico de la enfermedad.

Suponga que $k = 0.04$, y que $N_s = 250 000$ son las personas susceptibles a la enfermedad, y que el límite epidémico m es el 1% de la población susceptible.

$a)$ Resuelva la ecuación diferencial para esta epidemia en términos del número de personas que están inicialmente infectadas.

$b)$ Demuestre que si $N_0 = 5 000$, entonces $N(t)$ se aproxima N_s a largo plazo. Es decir, toda la población susceptible finalmente se infecta.

35. Reducción de contaminantes del aire. El aire en una habitación con un volumen de 3 000 pies3 contiene inicialmente 0.21 % de dióxido de carbono. Supongamos que la habitación recibe aire fresco que contiene 0.04 % de dióxido de carbono en la tasa de 800 pies3/min. Todo el aire en la habitación circula por un ventilador, y la mezcla sale a la misma tasa.

$a)$ Resolver el PVI para el porcentaje de dióxido de carbono en la habitación después de t minutos.

$b)$ ¿Qué porcentaje de dióxido de carbono queda en el espacio a largo plazo, es decir, cuando $t \to \infty$?
Ecuaciones diferenciales ordinarias de orden superior

En este capítulo estudiaremos las ecuaciones diferenciales de orden superior, iniciando con las de segundo orden y los métodos de resolución. Entre los métodos, tenemos: el método de coeficientes indeterminados, variación de parámetros, entre otros.

Una ecuación diferencial de segundo orden es de la forma

$$ F(x, y, y', y'') = 0, \quad (2.1) $$

donde F es alguna función dada. Otra forma equivalente es

$$ y'' = G(x, y, y'), \quad (2.2) $$

donde G es una función conocida. Diremos que la ecuación (2.2) es lineal si la función G puede escribirse como

$$ G(x, y, y') = g(x) - p(x) y' - q(x) y, $$

donde g, p y q son funciones dadas de la variable independiente x. En este caso, la ecuación (2.2) la escribimos como

$$ y'' + p(x) y' + q(x) y = f(x). \quad (2.3) $$

En lugar de (2.3), a menudo se tiene la ecuación

$$ P(x) y'' + Q(x) y' + R(x) y = H(x); \quad (2.4) $$

desde luego, si en (2.4) dividimos por $P(x) \neq 0$, entonces se reduce a la ecuación (2.3) con

$$ p(x) = \frac{Q(x)}{P(x)}, \quad q(x) = \frac{R(x)}{P(x)}, \quad f(x) = \frac{H(x)}{P(x)}. $$

Al analizar e intentar resolver (2.3), es necesario restringirse a intervalos en los cuales p, q y f son funciones continuas. Si (2.1) no es de la forma (2.3) o (2.4), entonces se dice que es no lineal.

Definición 2.1

Un problema de valor inicial (PVI) consta de una ecuación diferencial como (2.1), (2.3) o (2.4) junto con un par de condiciones iniciales de la forma $y(x_0) = y_0$, $y'(x_0) = y_1$.
Ejemplo 2.1

Consideramos (2.3) tenemos el siguiente PVI

\[
\begin{cases}
 y'' + p(x) y' + q(x) y = f(x) \\
 y(x_0) = y_0, \quad y'(x_0) = y_1
\end{cases}
\]

Teorema 2.1: De existencia y unicidad

Dadas las funciones continuas \(p(t) \), \(q(t) \) y \(f(x) \) en el intervalo abierto \((a, b) \). Entonces, existe una, y sólo una función \(y(t) \) que satisface el PVI sobre el intervalo \((a, b) \).

En particular, una solución \(y(x) \) de \(y'' + p(x) y' + q(x) y = 0 \) el cual satisface \(y(x_0) = 0 \) y \(y'(x_0) = 0 \) en algún \(x = x_0 \) debe ser idénticamente nula.

El teorema anterior es extremadamente importante para nosotros. Por un lado, es nuestra licencia de caza para encontrar la solución única \(y(t) \) de (2.4). Y, por otro lado, usaremos el teorema para ayudarnos a encontrar todas las soluciones de (2.3).

Diremos que la ecuación diferencial lineal de segundo orden es homogénea si el término \(f(x) \) de la ecuación (2.3), o el término \(H(x) \) de (2.4), es cero para todo \(x \). En caso contrario, la ecuación es no homogénea.

Ejemplo 2.2

Resolver

(a) \(2y'' - 5 = 0 \)

(b) \(x^2 y'' + 2xy' = 6x - x^{-2}, \quad x > 0 \)

(c) \(y'' = 4x \sqrt{y'} \)

Solución.

(a) \(y'' = \frac{5}{2} \iff \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{5}{2} \iff \int d \left(\frac{dy}{dx} \right) = \frac{5}{2} \int dx \iff y' = \frac{5}{2} x + C_1 \)

Se obtiene la solución general

\[y(x) = \frac{5}{4} x^2 + C_1 x + C_2 \]

(b) Como \(\frac{d}{dx} (x^2 y') = x^2 y'' + 2xy' = 6x - x^{-2} \) entonces integrando

\[\int d(x^2 y') = \int (6x - x^{-2}) dx \Rightarrow x^2 y' = 3x^2 + \frac{1}{x} + C_1 \Rightarrow y' = 3 + \frac{1}{x^3} + \frac{C_1}{x^2} \]

integrando nuevamente se obtiene la solución general

\[y = 3x - \frac{1}{2x^2} - \frac{C_1}{x} + C_2 \]

(c) Sea \(z = y' \) entonces \(z' = y'' \)

\[y'' = 4x \sqrt{y'} = \sqrt{z} \iff \int \frac{dz}{\sqrt{z}} = 4 \int x dx \]

\[\iff 2 \sqrt{z} = 2x^2 + C_1 \iff z = (x^2 + C_1/2)^2 = x^4 + C_1 x^2 + C_1^2/4 \]

\[\iff d y = (x^4 + C_1 x^2 + C_1^2/4) d x \iff y(x) = \frac{x^5}{5} + C_1 \frac{x^3}{3} + C_1^2/4 x + C_2. \]
Se obtiene la solución general

\[y(x) = \frac{x^5}{5} + C_1 \frac{x^3}{3} + C_2 \frac{x}{4x} + C_2. \]

2.1 Ecuaciones lineales homogéneas de segundo orden

En esta sección, nuestra atención se concentrará en las ecuaciones diferenciales ordinarias para las que la función \(f \) sea idénticamente nula; es decir,

\[y'' + p(x) y' + q(x) y = 0. \quad (2.5) \]

Dichas ecuaciones diferenciales, se denominan \textit{homogéneas}. Se observa que, una ecuación diferencial lineal homogénea siempre posee la solución trivial \(y = 0 \).

Los próximos resultados que mostraremos, son básicos para el estudio de las ecuaciones diferenciales ordinarias lineales homogéneas de segundo orden.

Definición 2.2: Independencia lineal

Diremos que las funciones \(y_1(x) \), \(y_2(x) \) definidas en el intervalo \(I \) son linealmente independientes en el intervalo \(I \), si

\[c_1 y_1(x) + c_2 y_2(x) = 0, \quad \forall x \in I \]

implica que \(c_1 = 0 \) y \(c_2 = 0 \) son las únicas soluciones, en otro caso se dice que las funciones \(y_1(x) \) y \(y_2(x) \) son linealmente dependientes en el intervalo \(I \).

\textbf{Nota}: A partir de la definición se obtiene que un par de funciones \(y_1(x) \) y \(y_2(x) \) son linealmente independientes en el intervalo \(I \) si y solo si ninguno de ellos es un múltiplo constante del otro en todo \(I \).

Definición 2.3: Wronskiano

El Wronskiano de las funciones diferenciables \(y_1(x) \) y \(y_2(x) \), esta definida por

\[W[y_1, y_2](x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}. \]

Teorema 2.2

Sean \(y_1(x) \) y \(y_2(x) \) funciones diferenciables en el intervalo \([a, b] \). Si \(W[y_1, y_2](x) \) no es idénticamente nulo en \([a, b] \) entonces las funciones \(y_1(x) \) y \(y_2(x) \) son linealmente independientes en \([a, b] \).

2.1.1 Soluciones de ecuaciones diferenciales lineales

Definición 2.4: Conjunto fundamental de soluciones

El conjunto \(\{y_1, y_2\} \) de soluciones linealmente independientes (LI) de la ecuación diferencial lineal homogénea (2.5) se dice que es un conjunto fundamental de soluciones sobre el intervalo \(I \).
La pregunta básica sobre la existencia de un conjunto fundamental de soluciones para una ecuación lineal se responde en el siguiente teorema.

Teorema 2.3: Existencia de un conjunto fundamental

Existe un conjunto fundamental de soluciones para (2.5) sobre el intervalo I.

En el próximo teorema veremos que la suma o superposición de dos soluciones de una ecuación diferencial lineal homogénea es también una solución.

Teorema 2.4: Principio de superposición

Si $y_1(x)$ y $y_2(x)$ son dos soluciones LI de (2.5) en el intervalo (a, b), entonces cualquier combinación lineal

$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$

de y_1 y y_2 es también una solución de (2.5) en (a, b).

Prueba.

Si $y(x) = C_1 y_1(x) + C_2 y_2(x)$ entonces

$$y'(x) = C_1 y_1'(x) + C_2 y_2'(x) \quad \text{y} \quad y''(x) = C_1 y_1''(x) + C_2 y_2''(x).$$

Por lo tanto,

$$y'' + p(x)y' + q(x)y = C_1 y_1''(x) + C_2 y_2''(x) + p(x)(C_1 y_1'(x) + C_2 y_2'(x)) + q(x)(C_1 y_1(x) + C_2 y_2(x))$$
$$= C_1 (y_1''(x) + p(x)y_1'(x) + q(x)y_1(x)) + C_2 (y_2''(x) + p(x)y_2'(x) + q(x)y_2(x))$$
$$= C_1 (0) + C_2 (0) = 0,$$

ya que y_1 y y_2 son soluciones de (2.5).

2.1.2 Ecuaciones homogéneas con coeficientes constantes

Comenzamos nuestro estudio de la EDO lineal de segundo orden con coeficientes constantes

$$ay'' + by' + cy = G(x) \quad (2.6)$$

donde a, b y c son constantes reales con $a \neq 0$.

Si $G(x) \neq 0$, diremos que (2.6) es no homogénea y para $G(x) = 0$ tenemos la EDO homogénea

$$ay'' + by' + cy = 0. \quad (2.7)$$

Al observar la ecuación (2.7) vemos que sus soluciones deben tener la propiedad de que su segunda derivada pueda expresarse como combinación lineal de sus derivadas de orden uno y cero. Esto sugiere tratar de hallar una solución de la forma $y = e^{rx}$, ya que las derivadas de e^{rx} son precisamente constantes por e^{rx}. Luego, sustituyendo $y = e^{rx}$ y sus derivadas en (2.7), obtenemos $y' = re^{rx}$, $y'' = r^2 e^{rx}$

$$ay'' + by' + cy = ar^2 e^{rx} + b re^{rx} + ce^{rx} = e^{rx} (ar^2 + br + c) = 0$$

como $e^{rx} > 0$ entonces

$$ar^2 + br + c = 0. \quad (2.8)$$

La ecuación (2.8) se denomina ecuación auxiliar (o característica) de la ecuación diferencial (2.7). Su importancia reside en el hecho de que si r es una raíz de la ecuación polinomial (2.8), entonces, $y = e^{rx}$ es una solución de la ecuación diferencial (2.7). Ya que (2.8) es una ecuación cuadrática con
coeficientes reales.

Veamos los siguientes casos:

Caso 1. Si (2.8) tiene dos raíces reales y diferentes

\[r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{y} \quad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

entonces dos soluciones linealmente independientes de (2.7) son

\[y_1 (x) = e^{r_1 x} \quad \text{y} \quad y_2 (x) = e^{r_2 x} \]

y por el principio de superposición, la solución general de (2.7) es

\[y = C_1 y_1 (x) + C_2 y_2 (x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}. \]

En efecto, basta ver que \(y_1 \) y \(y_2 \) son linealmente independientes

\[
W \begin{vmatrix} y_1 (x) & y_2 (x) \\ y'_1 (x) & y'_2 (x) \end{vmatrix} = \begin{vmatrix} e^{r_1 x} & e^{r_2 x} \\ r_1 e^{r_1 x} & r_2 e^{r_2 x} \end{vmatrix} = r_2 e^{(r_1 + r_2)x} - r_1 e^{(r_1 + r_2)x} = (r_2 - r_1) e^{(r_1 + r_2)x} \neq 0.
\]

Ejemplo 2.3

Resolver \(y'' + y' - 6y = 0. \)

Solución.

La ecuación auxiliar asociada está dada por

\[r^2 + r - 6 = 0; \]

de donde las raíces reales y diferentes son: \(r_1 = -3 \) y \(r_2 = 2. \) Luego, la solución general es

\[y (x) = C_1 e^{-3x} + C_2 e^{2x}. \]

Ejemplo 2.4

Resolver \(2y'' - 7y' + 3y = 0. \)

Solución.

Se observa que la ecuación auxiliar está determinada por

\[2r^2 - 7r + 3 = (2r - 1) (r - 3) = 0, \]

cuyas raíces son \(r_1 = \frac{1}{2} \) y \(r_2 = 3; \) así, la solución general del problema homogéneo es

\[y (x) = C_1 e^{1/2x} + C_2 e^{3x}. \]
Ecuaciones lineales homogéneas de segundo orden

Ejemplo 2.5

Resolver $y'' + 2y' = 0$.

Solución.

Vemos que la ecuación auxiliar asociada es $r^2 + 2r = 0$, cuyas raíces son $r_1 = 0$ y $r_2 = -2$; por lo que, la solución general del problema homogéneo es $y(x) = C_1 e^{0x} + C_2 e^{-2x} = C_1 + C_2 e^{-2x}$.

Por otro lado, notemos que

$$
\lim_{x \to \infty} y(x) = \lim_{x \to \infty} (C_1 + C_2 e^{-2x}) = C_1.
$$

Finalmente, grafiquemos la solución para $C_1 = 1$ y $C_2 = -2, 1, 2$ (ver figura 2.1).

![Figura 2.1: Curvas integrales.](image)

Caso 2. Si (2.8) tiene una única raíz real. En este caso, dos soluciones linealmente independientes de (2.7) son $y_1 = e^{rx}$, $y_2 = xe^{rx}$ y por el principio de superposición, la solución general de (2.7) es

$$
y = C_1 y_1(x) + C_2 y_2(x) = C_1 e^{rx} + C_2 xe^{rx}
$$

En efecto, veamos que y_1 y y_2 son LI:

$$
W[y_1, y_2](x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = \begin{vmatrix} e^{rx} & xe^{rx} \\ re^{rx} & e^{rx} + xe^{rx} \end{vmatrix} = e^{2rx} + xre^{2rx} - xe^{2rx} = e^{2rx} \neq 0.
$$
Ejemplo 2.6

Resolver el PVI

\[
\begin{align*}
 y'' + 2y' + y &= 0 \\
 y(0) &= 5, \quad y'(0) = -3
\end{align*}
\]

Solución.

Observamos que, la ecuación auxiliar es dada por

\[r^2 + 2r + 1 = (r + 1)^2 = 0,\]

cuya única raíz real es \(r = -1\); así, la solución general del problema homogéneo es

\[y(x) = C_1 e^{-x} + C_2 x e^{-x}.\]

Usando las condiciones iniciales \(y(0) = C_1 = 5\), y como \(y'(x) = -C_1 e^{-x} + C_2 e^{-x} - C_2 x e^{-x}\) entonces

\[y'(0) = -C_1 + C_2 - 0 = -3 \Rightarrow C_2 = 2\]

Luego, la solución del PVI es \(y(x) = 5 e^{-x} + 2 x e^{-x}\), cuya gráfica se muestra en la figura 2.2.

![Figura 2.2: Curva integral.](image)

Ejemplo 2.7

Resolver \(y'' - 6y' + 9y = 0\).

Solución.

Observamos que la ecuación auxiliar asociada es

\[r^2 - 6r + 9 = (r - 3)^2 = 0,\]
Ecuaciones lineales homogéneas de segundo orden

La única raíz real es \(r = 3 \); así, la solución general del problema homogéneo es

\[
y = C_1 e^{3x} + C_2 xe^{3x}.
\]

Ejemplo 2.8

Resolver \(4y'' - 20y' + 25y = 0 \).

Solución.
La ecuación auxiliar asociada es

\[
4r^2 - 20r + 25 = (2r - 5)^2 = 0,
\]
la cual tiene como única raíz real a \(r = 5/2 \); por lo que, la solución general del problema homogéneo es

\[
y = C_1 e^{\frac{5}{2}x} + C_2 xe^{\frac{5}{2}x}.
\]

Caso 3. Si (2.8) tiene dos raíces complejas y conjugadas \((r = a \pm \beta i, \; \beta \neq 0) \). Para este caso, dos soluciones linealmente independientes de (2.7) son \(y_1 = e^{ax} \cos (\beta x), \; y_2 = e^{ax} \sin (\beta x) \) y por el principio de superposición, la solución general de (2.7) es

\[
y(x) = C_1 y_1(x) + C_2 y_2(x) = C_1 e^{ax} \cos (\beta x) + C_2 e^{ax} \sin (\beta x) = e^{ax} (C_1 \cos (\beta x) + C_2 \sin (\beta x)).
\]

Ejemplo 2.9

Resolver \(y'' - 2y' + 2y = 0 \).

Solución.
Vemos que la ecuación auxiliar es

\[
r^2 - 2r + 2 = (r^2 - 2r + 1) + 1 = (r - 1)^2 + 1 = 0,
\]
cuyas raíces complejas son \(r = 1 \pm i \); por lo que, la solución general del problema homogéneo es

\[
y(x) = e^x (C_1 \cos x + C_2 \sin x).
\]

Ejemplo 2.10

Resolver el siguiente PVI

\[
\begin{align*}
y'' - 4y' + 5y &= 0, \\
y(0) &= 1, \quad y'(0) = 5.
\end{align*}
\]

Solución.
Se observa que la ecuación auxiliar es dada por

\[
r^2 - 4r + 5 = (r^2 - 4r + 4) + 1 = (r - 2)^2 + 1 = 0 \rightarrow r = 2 \pm \sqrt{-1}
\]
cuyas raíces son \(r = 2 \pm i \); así, la solución general del problema homogéneo es

\[
y(x) = e^{2x} (C_1 \cos x + C_2 \sin x).
\]
Luego, utilizando las condición inicial \(y(0) = 1 \), se tiene

\[
C_1 (1) + C_2 (0) = C_1 = 1,
\]

y

\[
y'(x) = 2e^{2x} (C_1 \cos (x) + C_2 \sen (x)) + e^{2x} (-C_1 \sen (x) + C_2 \cos (x))
\]

\[
y'(0) = 2C_1 + C_2 = 5 \Rightarrow C_2 = 3.
\]

Finalmente, la solución particular es \(y(x) = e^{2x} (\cos (x) + 3 \sen (x)) \).

2.1.3 Movimiento armónico simple no amortiguado

En esta sección vamos a considerar diversos ejemplos de ecuaciones diferenciales de segundo orden con coeficientes constantes.

Sistema masa-resorte. Un ejemplo básico será un carro de masa \(M \) unido a una pared cercana por medio de un resorte. Según la siguiente figura

![Figura 2.3: Masa-resorte.](image)

el resorte no ejerce fuerza cuando el carro está en posición de reposo \(x = 0 \). De acuerdo con Ley de Hooke, si el carro se desplaza una distancia \(x \), entonces el resorte ejerce una fuerza proporcional \(F_s = -kx \), donde \(k \) es una constante positiva conocida como constante de Hooke. Observar que, si \(x > 0 \), entonces el carro se mueve hacia la derecha y el resorte tira hacia la izquierda; entonces la fuerza es negativa. Por el contrario, si \(x < 0 \), el carro se mueve hacia la izquierda y el resorte resiste con fuerza a la derecha; entonces la fuerza es positiva.

La segunda ley del movimiento de Newton dice que la masa del carro multiplicada por su aceleración, es igual a la fuerza que actúa sobre el carro. Así,

\[
M \frac{d^2 x}{dt^2} = F_s = -kx
\]

de donde resulta

\[
\frac{d^2 x}{dt^2} + \frac{k}{M} x = 0.
\]

Haciendo \(a = \sqrt{\frac{k}{M}} \) (tanto \(k \) como \(M \) son positivos), entonces, la ecuación se puede escribir como

\[
\frac{d^2 x}{dt^2} + a^2 x = 0.
\]
Ecuaciones lineales homogéneas de segundo orden

Ecuación diferencial cuya ecuación auxiliar es $r^2 + a^2 = 0$ entonces $r = \pm \sqrt{-a^2} = \pm |a| i$. Así, la solución general es:

$$x(t) = e^{0t} (A \text{sen}(at) + B \cos(at)) = A \text{sen}(at) + B \cos(at).$$

Ahora suponga que el carro se tira hacia la derecha a una posición inicial de $x = x_0 > 0$ y luego simplemente se suelta (con velocidad inicial 0). Entonces tenemos las condiciones iniciales

$$x(0) = x_0 \text{ } y \text{ } \frac{dx}{dt}(0) = 0.$$

Así,

$$x'(t) = aA\cos(at) - aB\text{sen}(at),$$

entonces

$$x(0) = x_0 = A\text{sen}(0) + B\cos(0) = B \text{ } y \text{ } \frac{dx}{dt}(0) = 0 = A\cos(0) - Basen(0) = Aa$$

de donde $B = x_0$ y $A = 0$ y encontramos que la solución particular del sistema es

$$x(t) = x_0 \cos(at).$$

En otras palabras, si el carro se desplaza una distancia x_0 y se libera, entonces el resultado es un movimiento armónico simple (descrito por la función coseno) con amplitud x_0 (es decir, el el carro se desliza hacia adelante y hacia atrás, x_0 unidades a la izquierda del origen y luego x_0 unidades a la derecha) y con período $T = \frac{2\pi}{a}$ (lo que significa que el movimiento se repite cada $\frac{2\pi}{a}$ unidades de tiempo).

La frecuencia f del movimiento es el número de ciclos por unidad de tiempo, por lo tanto

$$f \cdot T = 1 \text{ } o \text{ } f = \frac{1}{T} = \frac{a}{2\pi}.$$

Es útil volver a sustituir el valor real de a para que podamos analizar la física del sistema. Así

amplitud = x_0

periodo = $T = \frac{2\pi \sqrt{M}}{\sqrt{k}}$

frecuencia = $f = \frac{\sqrt{k}}{2\pi \sqrt{M}}$.
El péndulo simple. Consiste de un objeto de masa \(m \) que oscila hacia adelante y hacia atrás en el extremo de una cuerda (o una varilla sin masa) de longitud \(L \), como se muestra en la figura 2.4.

![Figura 2.4: Péndulo simple.](image)

Podemos especificar la posición de la masa en el tiempo \(t \) dando el sentido antihorario al ángulo \(\theta = \theta(t) \) que la cuerda o varilla forma con la vertical en el tiempo \(t \). Analizaremos el movimiento del objeto de masa \(m \), para esto, aplicaremos la ley de conservación de la energía mecánica, según la cual la suma de la energía cinética y la energía potencial de \(m \) permanece constante.

La distancia a lo largo del arco circular desde 0 a \(m \) es \(s = L\theta \), por lo que la velocidad de la masa es

\[
v = \frac{ds}{dt} = L\left(\frac{d\theta}{dt}\right),
\]

y por lo tanto su energía cinética es

\[
E_c = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{ds}{dt}\right)^2 = \frac{1}{2}mL^2\left(\frac{d\theta}{dt}\right)^2.
\]

A continuación, elegimos como punto de referencia el punto más bajo \(O \) alcanzado por la masa (ver figura 2.4). Entonces su energía potencial \(E_p \) es el producto de su peso \(mg \) y su altura vertical \(h = L(1 - \cos \theta) \)

por encima de \(O \), entonces

\[
E_p = mgL(1 - \cos \theta)
\]

Como la suma de \(E_c \) y \(E_p \) es una constante \(C \), por lo tanto

\[
E_c + E_p = \frac{1}{2}mL^2\left(\frac{d\theta}{dt}\right)^2 + mgL(1 - \cos \theta) = C.
\]

Derivando ambos lados de la identidad con respecto a \(t \) obtenemos

\[
ml^2\left(\frac{d\theta}{dt}\right)\frac{d^2\theta}{dt^2} + mgL(0 + \sin \theta)\frac{d\theta}{dt} = 0,
\]

simplificando resulta la EDO no lineal

\[
\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin \theta = 0.
\]

Sin embargo, utilizando el polinomio de Taylor para \(\sin \theta \) alrededor de \(\theta = 0 \) obtenemos

\[
\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots.
\]
Para θ pequeño, $\sin \theta$ es aproximadamente a θ (el cual escribimos matemáticamente como $\sin \theta \approx \theta$). Reemplazando $\sin \theta$ en la EDO no lineal por θ, obtenemos la siguiente ecuación diferencial linealizada

$$\frac{d^2 \theta}{dt^2} + \frac{g}{L} \theta = 0.$$

el cual aproxima el movimiento del péndulo simple para θ pequeño.

Observación. La ecuación diferencial deducida también puede derivarse utilizando la segunda ley de Newton $F = ma$, aplicado a componentes tangenciales de la aceleración de la masa y la fuerza que actúa sobre ella, de acuerdo a la siguiente figura.

![Figura 2.5: Péndulo simple.](image)

Teorema 2.5: De existencia y unicidad: caso homogéneo

Para algunos números reales $a \neq 0$, b, c, x_0, y_0 y y_1, existe una única solución del problema de valor inicial (PVI)

$$ay'' + by' + cy = 0; \ y(x_0) = y_0, \ y'(x_0) = y_1.$$

La solución es válida para todo x en $(-\infty, \infty)$.

Teorema 2.6: Representación de soluciones para PVI

Si $y_1(x)$ y $y_2(x)$ son dos soluciones de la ecuación diferencial (2.7) que son linealmente independientes sobre $(-\infty, \infty)$, entonces existen constantes únicas C_1 y C_2 tal que $C_1y_1(x) + C_2y_2(x)$ satisface el PVI en $(-\infty, \infty)$.

2.2 Ecuaciones lineales no homogéneas de segundo orden

Estudiaremos la siguiente EDO

$$ay'' + by' + cy = f(x)$$
donde \(a, b \) y \(c \) son constantes reales y \(f(x) \neq 0 \), para esto usaremos el método de los coeficientes indeterminados y de variación de parámetros.

\[
y_h(x) + y_p(x).
\]

2.2.1 Método de los coeficientes indeterminados

Este método consiste en inspeccionar la regla de correspondencia de la función \(f \). Por lo tanto, si

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(y_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_n(x) = a_n x^n + \cdots + a_1 x + a_0)</td>
<td>(x^s (A_n x^n + \cdots + A_1 x + A_0))</td>
</tr>
<tr>
<td>(a e^{ax})</td>
<td>(x^s A e^{ax})</td>
</tr>
<tr>
<td>(p_n(x) e^{ax})</td>
<td>(x^s P_n(x) e^{ax})</td>
</tr>
<tr>
<td>(p_n(x) + e^{ax})</td>
<td>(x^s (P_n(x) + A e^{ax}))</td>
</tr>
<tr>
<td>(a \cos(\beta x) + b \sin(\beta x))</td>
<td>(x^s (A \cos(\beta x) + B \sin(\beta x)))</td>
</tr>
<tr>
<td>(e^{ax} (a \cos(\beta x) + b \sin(\beta x)))</td>
<td>(x^s e^{ax} (A \cos(\beta x) + B \sin(\beta x)))</td>
</tr>
<tr>
<td>(p_n(x) \cos(\beta x) + q_m(x) \sin(\beta x))</td>
<td>(x^s (P_N(x) \cos(\beta x) + Q_N(x) \sin(\beta x)), \text{ } N = \max{m, n})</td>
</tr>
<tr>
<td>(e^{ax} (p_n(x) \cos(\beta x) + q_m(x) \sin(\beta x)))</td>
<td>(x^s e^{ax} (P_N(x) \cos(\beta x) + Q_N(x) \sin(\beta x)), \text{ } N = \max{m, n})</td>
</tr>
</tbody>
</table>

donde \(P_N(x) \) y \(Q_N(x) \) son polinomios de grado \(N \) de coeficientes indeterminados y \(s \) se elige como sigue, si \((\alpha \pm \beta i) \) es una raíz de la ecuación característica \(s \) es el orden de multiplicidad de esta raíz, en otro caso \(s = 0 \).

Modificación. Si una función en la solución particular asumida es también una solución de la ecuación diferencial homogénea asociada. En este caso, el entero no negativo \(s \) se elige como el menor entero tal que ningún término de la solución particular \(y_p(x) \) sea solución de la ecuación homogénea correspondiente.

Ejemplo 2.11

Determine la forma de la solución particular de \(y'' - 8y' + 25y = 2x^3 e^{-x} - 3xe^{-x} \).

Solución.

La ecuación auxiliar asociada es \(r^2 - 8r + 25 = (r - 4)^2 + 9 = 0 \), cuyas raíces son \(r = 4 \pm 3i \); así la solución general del problema homogéneo es

\[
y_h = e^{4x} (C_1 \cos(3x) + C_2 \sin(3x)).
\]

Como \(f(x) = (2x^3 - 3x) e^{-x} \) y \(-1 \) no es una raíz de la ecuación característica entonces la solución particular es

\[
y_p = (Ax^3 + Bx^2 + Cx + D) e^{-x},
\]

se observa no existe duplicación entre los términos de \(y_p \) y los términos de la solución homogénea: \(y_1(x) = e^{4x} \cos(3x), \text{ } y_2(x) = e^{4x} \sin(3x) \).
Ejemplo 2.12

Determine la forma de una solución particular de

\[y'' - 9y' + 14y = 5x^2 + 3 - 3\cos(2x) + 6xe^{7x}. \]

Solución.

Para este ejemplo, la forma de \(y_p \) es una combinación lineal de todas las funciones linealmente independientes que son generadas mediante diferenciaciones (el modo de diversificar) repetidas de \(f(x) \).

La ecuación auxiliar asociada al problema homogéneo es

\[r^2 - 9r + 14 = (r - 2)(r - 7) = 0, \]

cuyas raíces son \(r_1 = 2 \) y \(r_2 = 7 \); así, la solución general del problema homogéneo es

\[y_h = C_1e^{2x} + C_2e^{7x}. \]

Luego, correspondiente a \(5x^2 + 3 \) y como 0 no es un cero de la ecuación característica asumimos que \(y_{p1} = Ax^2 + Bx + C \). Para a \(-3\cos(2x)\) y como 2i no es un cero de la ecuación característica asumimos que \(y_{p2} = D\cos(2x) + E\sen(2x) \). Para \(6xe^{7x} \) y como 7 no es un cero de la ecuación característica asumimos que \(y_{p3} = (Fx + G)e^{7x} \).

Por lo tanto, la solución particular es

\[y_p = y_{p1} + y_{p2} + y_{p3} = Ax^2 + Bx + C + D\cos(2x) + E\sen(2x) + (Fx + G)e^{7x}. \]

Notemos que no hay términos repetidos en la solución homogénea \(y_h = C_1e^{2x} + C_2e^{7x} \).

Ejemplo 2.13

Resolver \(y'' - 10y' + 25y = 30x + 3 \).

Solución.

(i) Solución homogénea \(y_h \): vemos que \(y'' - 10y' + 25y = 0 \); por lo que, la ecuación auxiliar asociada es

\[r^2 - 10r + 25 = (r - 5)^2 = 0, \]

cuya única raíz real es \(r = 5 \) de multiplicidad 2; así, la solución del problema homogéneo es

\[y_h = C_1e^{5x} + C_2xe^{5x}. \]

(ii) Solución particular: Como el segundo miembro es \(f(x) = 30x + 3 \) y 0 no es una raíz de la ecuación característica, \(y_p = Ax + B \) es la solución particular de la EDO, entonces \(y_p' = A \), \(y_p'' = 0 \). Reemplazando en la EDO

\[y_p'' - 10y_p' + 25y_p = 0 - 10A + 25(Ax + B) = 25Ax + (-10A + 25B) = 30x + 3 \]

De esto se obtiene

\[
\begin{align*}
25A &= 30 \\
-10A + 25B &= 3
\end{align*}
\Rightarrow A = \frac{6}{5}, \quad B = \frac{3}{5}
\]

por lo que la solución particular es \(y_p = \frac{6}{5}x + \frac{3}{5} \).

(iii) Solución general:

\[y_g = y_h + y_p = C_1e^{5x} + C_2xe^{5x} + \frac{6}{5}x + \frac{3}{5}. \]
Ejemplo 2.14

Resolver \(y'' - y = x^2 + 2x - 3 \).

Solución.

(i) Solución homogénea \(y_h: y'' - y = 0 \). La ecuación auxiliar es \(r^2 - 1 = 0 \) cuyas raíces son \(r_1 = -1 \) y \(r_2 = 1 \); así la solución del problema homogéneo es \(y_h = C_1 e^{-x} + C_2 e^x \).

(ii) Solución particular: Como el segundo miembro es \(f(x) = x^2 + 2x - 3 \) y 0 no es una raíz de la ecuación característica, \(y_p = Ax^2 + Bx + C \) es la solución particular de la EDO, entonces \(y_p'' = 2Ax + B \) y \(y_p'' = 2A \). Reemplazando en la EDO

\[
y_p'' - y_p = x^2 + 2x - 3 \iff -Ax^2 - Bx + 2A - C = x^2 + 2x - 3
\]

de donde

\[
\begin{dcases}
-A = 1, -B = 2 \\
2A - C = -3
\end{dcases}
\Rightarrow A = -1, B = -2 \text{ y } C = 1.
\]

Entonces \(y_p = -x^2 - 2x + 1 \).

(iii) Solución general

\[
y = y_h + y_p = C_1 e^{-x} + C_2 e^x - x^2 - 2x + 1.
\]

Ejemplo 2.15

La demanda y la oferta de un bien están en función de las variaciones del precio en el tiempo, según las siguientes ecuaciones:

\[
Q_D(t) = t^2 + 50t + 100 - p(t) - \frac{1}{2} p'(t), \quad Q_S(t) = 3p(t) + \frac{3}{2} p'(t) + p''(t)
\]

donde \(p(t) \) es el precio en cualquier instante \(t \), asumiendo un mercado perfecto en algún instante \(t \), determine la trayectoria temporal para el precio \(p(t) \).

Solución.

Como el mercado es perfecto, entonces

\[
Q_S(t) = Q_D(t) \iff 3p(t) + \frac{3}{2} p'(t) + p''(t) = t^2 + 50t + 100 - p(t) - \frac{1}{2} p'(t)
\]

de donde tenemos la EDO:

\[
p'' + 2p' + 4p = t^2 + 50t + 100 = f(t).
\]

(i) Solución homogénea \(p_h: p'' + 2p' + 4p = 0 \).

La ecuación auxiliar asociada es

\[
r^2 + 2r + 4 = 0 \iff (r + 1)^2 = -3 \iff r = -1 \pm \sqrt{3} i = \alpha \pm \beta i.
\]

Luego, la solución es

\[
p_h(t) = e^{-t} \left(C_1 \cos \left(\sqrt{3} t \right) + C_2 \sen \left(\sqrt{3} t \right) \right).
\]

(ii) Solución particular: Como el segundo miembro es \(f(t) = t^2 + 50t + 100 \) y 0 no es una raíz de la ecuación característica, \(p_p(t) = At^2 + Bt + C \) es la solución particular de la EDO, entonces \(p' = 2At + B, p'' = 2A \), y reemplazando en la ecuación diferencial obtenemos

\[
p''_p + 2p'_p + 4p_p = 2A + 2(2At + B) + 4(At^2 + Bt + C)
\]

\[
= 4At^2 + (4A + 4B)t + (2A + 2B + 4C) = t^2 + 50t + 100
\]
Ecuaciones lineales no homogéneas de segundo orden

\[\begin{aligned} \begin{cases} 4A = 1 \\ 4A + 4B = 50 \\ 2A + 2B + 4C = 100 \end{cases} \Rightarrow A = \frac{1}{4}, \quad B = \frac{49}{4} \quad \text{y} \quad C = \frac{75}{4}; \end{aligned} \]

por lo que la solución particular es \(p(t) = \frac{1}{4} t^2 + \frac{49}{4} t + \frac{75}{4} \).

(iii) Solución general

\[p(t) = p_h(t) + p_p(t) = e^{-t} \left(C_1 \cos \left(\sqrt{3}t \right) + C_2 \sen \left(\sqrt{3}t \right) \right) + \frac{1}{4} t^2 + \frac{49}{4} t + \frac{75}{4}. \]

Ejemplo 2.16

Resolver \(y'' + 3y = -48x^2 e^{3x} \).

Solución.

(i) Solución homogénea \(y_h \): \(y'' + 3y = 0 \). La ecuación auxiliar es \(r^2 + 3 = 0 \) tenemos las raíces complejas y conjugadas \(r = \pm \sqrt{3}i \); así, la solución general del problema homogéneo es

\[y_h = C_1 \cos \left(\sqrt{3}x \right) + C_2 \sen \left(\sqrt{3}x \right). \]

con \(y_1(x) = \cos \left(\sqrt{3}x \right) \) y \(y_2(x) = \sen \left(\sqrt{3}x \right) \).

(ii) Solución particular: Como el segundo miembro es \(f(x) = -48x^2 e^{3x} \) y 3 no es una raíz de la ecuación característica, \(y_p = (Ax^2 + Bx + C) e^{3x} \) es la solución particular de la EDO, entonces

\[\begin{aligned} y_p' &= e^{3x} \left(3Ax^2 + (2A + 3B) x + (B + 3C) \right) \\ y_p'' &= e^{3x} \left(9Ax^2 + (12A + 9B) x + (2A + 6B + 9C) \right) \end{aligned} \]

Reemplazando en \(y_p'' + 3y_p = -48x^2 e^{3x} \), obtenemos

\[e^{3x} \left(9Ax^2 + (12A + 9B) x + (2A + 6B + 9C) \right) + 3 \left(Ax^2 + Bx + C \right) e^{3x} = -48x^2 e^{3x} \]

De esto se obtiene

\[(6A + 24) x^2 + (6A + 6B) x + (A + 3B + 6C) = 0, \]

Lo que implica

\[\begin{aligned} 6A + 24 &= 0, \\ 6A + 6B &= 0, \\ A + 3B + 6C &= 0. \end{aligned} \]

De esto se obtiene \(A = -4, B = 4, C = -\frac{4}{3} \), reemplazando se obtiene la solución general

\[y = y_h + y_p = C_1 \cos \left(\sqrt{3}x \right) + C_2 \sen \left(\sqrt{3}x \right) + \left(-4x^2 + 4x - \frac{4}{3} \right) e^{3x}. \]
Ejemplo 2.17

Resolver \(y'' - y' = -3 \).

Solución.

(i) Solución homogénea \(y_h \): \(y'' - y' = 0 \). La ecuación auxiliar es \(r^2 - r = r (r - 1) = 0 \) tenemos las raíces \(r_1 = 0 \), \(r_2 = 1 \) así la solución del problema homogéneo es \(y_h = C_1 e^{0x} + C_2 e^{x} \)

con \(y_1 (x) = 1 \) y \(y_2 (x) = e^{x} \).

(ii) Solución particular \(y_p \): Como el segundo miembro es \(f (x) = -3 \) y 0 es una raíz de multiplicidad 1 de la ecuación característica, \(y_p = Ax + B \) es la solución particular de la EDO, \(y_p = Ax \), es la solución particular de la EDO, entonces \(y'_p = A \), \(y''_p = 0 \). Reemplazando en la EDO

\[y''_p - y_p = 0 - A = -3 \Rightarrow A = 3, \]

Por lo tanto, \(y_p = 3x \).

(iii) Solución general

\[y_g = y_h + y_p = C_1 + C_2 e^{x} + 3x. \]

Ejemplo 2.18

Resolver \(y'' - y' + \frac{1}{4}y = 3 + e^{x/2} = f (x) \).

Solución.

(i) Solución homogénea \(y_h \): \(y'' - y' + \frac{1}{4}y = 0 \). La ecuación auxiliar es \(r^2 - r + \frac{1}{4} = (r - 1/2)^2 = 0 \) tenemos las raíces \(r = 1/2 \); así, la solución del problema homogéneo es \(y_h = C_1 e^{1/2x} + C_2 x e^{1/2x} \)

con \(y_1 (x) = e^{1/2x} \) y \(y_2 (x) = xe^{1/2x} \).

(ii) Solución particular \(y_p \): Como el segundo miembro es \(f (x) = 3 + e^{x/2} \) y \(3/2 \) es una raíz de multiplicidad 2 de la ecuación característica y 0 no es una raíz de esta ecuación, \(y_p = y_p = A + Bx^2 e^{x/2} \) es la solución particular de la EDO, entonces

\[y'_p = 2Bxe^{x/2} + \frac{1}{2}Bx^2 e^{x/2} \]

\[y''_p = 2Be^{x/2} + 2Be^{x/2} + Bxe^{x/2} + \frac{1}{4}Bx^2 e^{x/2} = 2Be^{x/2} + 2Be^{x/2} + \frac{1}{4}Bx^2 e^{x/2}. \]

Reemplazando en la EDO

\[y''_p - y'_p + \frac{1}{4}y_p \]

\[= 2Be^{x/2} + 2Be^{x/2} + \frac{1}{4}Bx^2 e^{x/2} - 2Bxe^{x/2} + \frac{1}{4}Bx^2 e^{x/2} - \frac{1}{2}Bx^2 e^{x/2} - \frac{1}{4}A + \frac{1}{4}Bx^2 e^{x/2} \]

\[= \frac{1}{4}A + 2Be^{x/2} \equiv 3 + e^{x/2} \]

\(A = 12 \) y \(B = \frac{1}{2} \). Por lo tanto, \(y_p = 12 + \frac{1}{2}x^2 e^{x/2} \).
(iii) Solución general

\[y_g = y_h + y_p = C_1 e^{1/2x} + C_2 xe^{1/2x} + 12 + \frac{1}{2} x^2 e^{x/2}. \]

Ejemplo 2.19

Encuentre una solución particular de \(y'' - 2y' + y = e^x \).

Solución.

La ecuación auxiliar asociada al problema homogéneo es

\[r^2 - 2r + 1 = (r - 1)^2 = 0, \]

cuya raíz de multiplicidad 2 es \(r = 1 \); se tienen las soluciones linealmente independiente \(\phi_1 (x) = e^x \) y \(\phi_2 (x) = xe^x \) por lo que, la solución general del problema homogéneo es

\[y_h = C_1 e^x + C_2 xe^x. \]

Como el segundo miembro es \(f (x) = e^x \) y 1 es una raíz de multiplicidad 2 de la ecuación característica, \(y_p = A x e^x \) es la solución particular de la EDO, como

\[y_p'' - 2y'_p + y_p = f (x), \]

\[2A e^x + 4Ax e^x + Ax^2 e^x - 4Axe^x - 2Axe^x + Ax^2 e^x = e^x, \]

\[2A e^x = e^x, \]

de donde \(A = \frac{1}{2} \). Luego, la solución particular es \(y_p = \frac{1}{2} x^2 e^x \).

Ejemplo 2.20

Resolver \(y'' - 7y' + 6y = (x - 2) e^x \), aplicando el método de los coeficientes indeterminados.

Solución.

(i) Problema homogéneo \(y_h \): \(y'' - 7y' + 6y = 0 \), la ecuación auxiliar asociada es \(r^2 - 7r + 6 = 0 \) cuyas raíces son \(r = 1 \) y \(r = 6 \); así la solución del problema homogéneo es \(y_h = C_1 e^x + C_2 e^{6x} \).

(ii) Solución particular: Como el segundo miembro es \(f (x) = (x - 2) e^x \) y 1 es una raíz de multiplicidad 1 de la ecuación característica, \(y_p = x^1 (Ax + B) e^x \) es la solución particular de la EDO, entonces

\[y_p = (Ax^2 + Bx) e^x \]

\[y'_p = (Ax^2 + (2A + B) x + B) e^x \]

\[y'_p = (Ax^2 + (4A + B) x + 2A + 2B) e^x \]

Reemplazando en la EDO tenemos

\[y_p'' - 7y'_p + 6y_p = (x - 2) e^x \]

\[-10Axe^x (2A - 5B) e^x = (x - 2) e^x \]

Luego, \(2A - 5B - 10Ax \equiv x - 2 \) de donde \(A = -1/10 \) y \(B = 9/25 \).
(iii) Finalmente, se obtiene la solución general

\[y = y_h + y_p = C_1 e^{x} + C_2 e^{6x} + \left(-\frac{1}{10} x + \frac{9}{25} \right) e^{x}. \]

Ejemplo 2.21

Encontrar la forma de la solución de \(y'' + y = 3x^2 + 8\cos x \).

Solución.

Aplicamos la siguiente regla: si algún \(y_p \) contiene términos que duplican términos en \(y_h \), entonces eso debe ser multiplicado por \(x^s \), donde \(s \) es el número entero positivo más pequeño que elimina esa duplicación.

La solución de la ecuación homogénea asociada \(y'' + y = 0 \) es

\[y_h = C_1 \cos x + C_2 \sen x. \]

Como \(f(x) = 3x^2 + 8\cos x \) es la suma de un polinomio de segundo grado y una función coseno, nuestra suposición normal para \(y_p \) es la suma de

\[y_p = Ax^2 + Bx + C y_{p_1} = D\cos x + E\sen x, \]

es decir,

\[y_p = Ax^2 + Bx + Cy + D\cos x + E\sen x. \]

(2.9)

Pero hay una duplicación obvia de los términos \(\cos x \) y \(\sen x \) en esta forma supuesta y dos términos en la solución homogénea. Esta duplicación puede eliminarse simplemente multiplicando por \(x \). En lugar de (2.9) ahora usamos

\[y_p = Ax^2 + Bx + Cy + Dx\cos x + Ex\sen x. \]

2.2.2 Método de variación de parámetros

Consideremos la ecuación no homogénea lineal de segundo orden

\[ay'' + by' + cy = f(x) \]

(2.10)

y sean \(y_1 = y_1(x) \), \(y_2 = y_2(x) \) soluciones linealmente independientes para la ecuación homogénea correspondiente

\[ay'' + by' + cy = 0, \]

entonces, sabemos que la solución para esta ecuación homogénea es

\[y_h = C_1 y_1(x) + C_2 y_2(x), \]

(2.11)

donde \(C_1 \) y \(C_2 \) son constantes.

Luego, para encontrar una solución particular de la solución no homogénea, la estrategia de variación de parámetros es reemplazar las constantes en (2.11) por funciones de \(x \). Que es, buscar una solución de (2.10) de la forma

\[y_p = C_1(x) y_1(x) + C_2(x) y_2(x). \]

(2.12)

Entonces

\[y_p' = (C_1'(x) y_1(x) + C_2'(x) y_2(x)) + (C_1(x) y_1'(x) + C_2(x) y_2'(x)). \]

Para simplificar los cálculos y evitar las derivadas de segundo orden de las variables desconocidas \(C_1(x) \) y \(C_2(x) \) en la expresión para \(y_p'' \), imponemos el requerimiento

\[C_1'(x) y_1(x) + C_2'(x) y_2(x) = 0. \]

(2.13)

Entonces, la fórmula para \(y_p' \) se convierte en

\[y_p' = C_1(x) y_1'(x) + C_2(x) y_2'(x). \]
y así,
\[y''_p = C_1'(x) y'_1(x) + C_1(x) y''_1(x) + C_2'(x) y'_2(x) + C_2(x) y''_2(x) \]

Ahora, sustituyendo \(y_p, \ y'_p \) y \(y''_p \) en (2.10), encontramos
\[f(x) = a y''_p + b y'_p + c y_p \]
\[= a(C_1'y_1' + C_1y_1' + C_2'y_2' + C_2y_2') + b(C_1'y_1' + C_2'y_2') + c(C_1y_1 + C_2y_2) \]
\[= a(C_1'y_1' + C_2'y_2') + C_1(ay_1'' + by_1' + cy_1) + C_2(ay_2'' + by_2' + cy_2) \]
\[= a(C_1'y_1' + C_2'y_2') + 0 + 0 \]
\[= a(C_1'y_1' + C_2'y_2') \]

(2.14)

donde usamos que \(y_1(x) \) y \(y_2(x) \) son soluciones de la ecuación diferencial homogénea. Así, de (2.13) y (2.14) obtenemos el siguiente sistema de ecuaciones diferenciales
\[
\begin{align*}
C_1'(x) y_1(x) + C_2'(x) y_2(x) & = 0 \\
C_1'(x) y'_1(x) + C_2'(x) y'_2(x) & = \frac{f(x)}{a}
\end{align*}
\]

(2.15)

Para resolver el sistema lineal (2.15) en las variables \(C_1'(x) \) y \(C_2'(x) \), aplicamos la regla de Cramer
\[
W[y_1 \ y_2](x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}, \quad \Delta_{C_1(x)} = \begin{vmatrix} 0 & y_2 \\ \frac{f(x)}{a} & y'_2 \end{vmatrix} = -\frac{y_2(x) f(x)}{a}
\]
\[
\Delta_{C_2(x)} = \begin{vmatrix} y_1 & 0 \\ \frac{f(x)}{a} & y'_1 \end{vmatrix} = \frac{y_1(x) f(x)}{a}
\]

de donde
\[C_1'(x) = -\frac{y_2(x)f(x)}{W[y_1 \ y_2](x)} \quad \text{y} \quad C_2'(x) = \frac{y_1(x)f(x)}{W[y_1 \ y_2](x)}.
\]

Luego, integrando conseguimos
\[C_1(x) = -\frac{1}{a} \int \frac{y_2(x) f(x)}{W[y_1 \ y_2](x)} \, dx \quad \text{y} \quad C_2(x) = \frac{1}{a} \int \frac{y_1(x) f(x)}{W[y_1 \ y_2](x)} \, dx,
\]

por lo que,
\[y_p(x) = -\frac{1}{a} \left(\int \frac{y_2(x) f(x)}{W[y_1 \ y_2](x)} \, dx \right) y_1(x) + \frac{1}{a} \left(\int \frac{y_1(x) f(x)}{W[y_1 \ y_2](x)} \, dx \right) y_2(x). \]

Ejemplo 2.22

Resolver \(y'' + y = \cos^2 x \).

Solución.

(i) Solución homogénea: \(y'' + y = 0 \). La ecuación auxiliar es \(r^2 + 1 = 0 \) cuya raíz es \(r = \pm i \); así la solución homogénea es
\[y_h = C_1 \cos x + C_2 \sen x = C_1 y_1(x) + C_2 y_2(x). \]
ii) Solución particular \(y_p = C_1(x) \cos x + C_2(x) \sen x \), hallamos \(C_1(x) \) y \(C_2(x) \).

\[
W[y_1, y_2](x) = \begin{vmatrix}
y_1 & y_2 \\
y_1' & y_2'
\end{vmatrix} = \begin{vmatrix}
\cos x & \sen x \\
\sen x & -\cos x
\end{vmatrix} = 1,
\]

\[
C_1(x) = -\frac{1}{a} \int \frac{y_2(x) f(x)}{W[y_1, y_2](x)} dx = -\int \frac{\cos x \cos^2 x}{1} dx = \int \cos^2 x (-\sen x dx) = \frac{\cos^3 x}{3}.
\]

\[
C_2(x) = \frac{1}{a} \int \frac{y_1(x) f(x)}{W[y_1, y_2](x)} dx = \frac{1}{1} \int \frac{\cos x \cos^2 x}{1} dx = \cos x \{1 - \sen^2 x\} dx = \sen x - \frac{\sen^3 x}{3}.
\]

Por lo tanto, la solución particular es

\[
y_p = C_1(x) \cos x + C_2(x) \sen x = y_p = \frac{\cos^3 x}{3} \cos x + \left(1 - \frac{\sen^2 x}{3}\right) \sen^2 x.
\]

(iii) Solución general \(y_g \):

\[
y_g = C_1y_1(x) + C_2y_2(x) + \frac{\cos^4 x}{3} + \left(1 - \frac{\sen^2 x}{3}\right) \sen^2 x.
\]

Ejemplo 2.23

Resolver \(y'' - 10y' + 25y = x \).

Solución.

(i) Solución homogénea: \(y'' - 10y' + 25y = 0 \). La ecuación auxiliar asociada es \(r^2 - 10r + 25 = 0 \) cuya única raíz real es \(r = 5 \); así la solución del problema homogéneo es \(y_h = C_1 e^{5x} + C_2 xe^{5x} \).

(ii) Solución particular \(y_p(x) = C_1(x) e^{5x} + C_2(x) xe^{5x} \), hallamos \(C_1(x) \) y \(C_2(x) \)

\[
W[y_1, y_2] = \begin{vmatrix}
y_1 & y_2 \\
y_1' & y_2'
\end{vmatrix} = \begin{vmatrix}
e^{5x} & xe^{5x} \\
5e^{5x} & e^{5x} + 5xe^{5x}
\end{vmatrix} = e^{10x}(1+5x) - 5xe^{10x} = e^{10x},
\]

\[
C_1(x) = \frac{1}{a} \int \frac{y_2(x) f(x)}{W[y_1, y_2]} dx = -\int \frac{(xe^{5x}) x}{e^{10x}} dx = -\int x^2 e^{-5x} dx = -\frac{1}{125} e^{-5x}(25x^2 + 10x + 2)
\]

\[
C_2(x) = \frac{1}{a} \int \frac{y_1(x) f(x)}{W[y_1, y_2]} dx = \int \frac{(e^{5x}) x}{e^{10x}} dx = \int xe^{-5x} dx = -\frac{1}{25} e^{-5x}(5x + 1).
\]

Por lo tanto, la solución particular es

\[
y_p = \frac{1}{125} (25x^2 + 10x + 2) - \frac{1}{25} (5x + 1) x.
\]

(iii) Solución general \(y_g \):

\[
y_g = y_h + y_p = C_1 e^{5x} + C_2 xe^{5x} + \frac{1}{125} (25x^2 + 10x + 2) - \frac{1}{25} (5x + 1) x.
\]
Ejemplo 2.24

Resuelva el problema de valor inicial

\[
\begin{cases}
y'' - 4y' + 5y = \frac{2e^x}{\text{sen}x} \\
y(\pi/2) = e^\pi, \ y'(\pi/2) = 2e^\pi.
\end{cases}
\]

Solución.

(i) Solución homogénea: \(y'' - 4y' + 5y = 0\). La ecuación auxiliar es \(r^2 - 4r + 5 = 0\) cuyas raíces son \(r = 2 \pm i\); así la solución del problema homogéneo es \(y_h = e^{2x}(C_1 \cos x + C_2 \text{sen}x)\).

(ii) Solución particular \(y_p = e^{2x}(C_1(x) \cos x + C_2(x) \text{sen}x)\), hallamos \(C_1(x)\) y \(C_2(x)\)

\[
W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{2x} \cos x & e^{2x} \text{sen}x \\ 2e^{2x} \cos x - e^{2x} \text{sen}x & 2e^{2x} \text{sen}x + e^{2x} \cos x \end{vmatrix} = e^{4x}(2 \text{sen}x \cos x + \cos^2 x) - e^{4x}(2 \text{sen}x \cos x - \text{sen}^2 x) = e^{4x}.
\]

\(W_1 = (-1)^{2-1}W[y_2] = -e^{2x} \text{sen}x\)

\(W_2 = (-1)^{2-2}W[y_1] = e^{2x} \cos x\)

luego

\[
C_1(x) = \int \frac{f(x)W_1(x)}{W[y_1, y_2](x)} \, dx = \int \frac{2e^x}{\text{sen}x} \frac{(-e^{2x} \text{sen}x)}{e^{4x}} \, dx = -2 \int dx = -2x
\]

\[
C_2(x) = \int \frac{f(x)W_2(x)}{W[y_1, y_2](x)} \, dx = \int \frac{2e^x}{\text{sen}x} \frac{(e^{2x} \cos x)}{e^{4x}} \, dx = 2 \int \cot x \, dx = 2 \ln |\text{sen}x|.
\]

(iii) Solución general: tenemos que

\[
y(x) = e^{2x}(C_1 \cos x + C_2 \text{sen}x) + e^{2x}(-2x \cos x + 2 \ln |\text{sen}x| \text{sen}x)
\]

\[
y = e^{2x}(C_1 \cos x + C_2 \text{sen}x - 2x \cos x + 2 \ln |\text{sen}x| \text{sen}x)
\]

\[
y'(x) = 2e^{2x}(C_1 \cos x + C_2 \text{sen}x - 2x \cos x + 2 \ln |\text{sen}x| \text{sen}x) +
\]

\[
e^{2x}(-C_1 \text{sen}x + C_2 \cos x - 2x \cos x + 2x \text{sen}x + 2 \ln |\text{sen}x| \cos x + 2 \cos x).
\]

Finalmente, aplicando las condiciones iniciales, \(y\left(\frac{\pi}{2}\right) = C_2 e^\pi = e^\pi\) y \(y'\left(\frac{\pi}{2}\right) = 2e^\pi\), entonces \(C_2 = 1\) y \(C_1 = \pi\).

Ejemplo 2.25

La demanda y la oferta de un bien están en función de las variaciones del precio en el tiempo, según las siguientes ecuaciones:

\[
Q_D(t) = e^{-t} \ln t + 2p(t) - \frac{1}{2} p'(t), \quad Q_S(t) = 3p(t) + \frac{3}{2} p'(t) + p''(t)
\]

donde \(p(t)\) es el precio en cualquier instante \(t\). Si el mercado es perfecto en algún instante \(t\);
es decir, \(Q_s(t) = Q_d(t) \), determine la trayectoria temporal para el precio \(p(t) \).

Solución.

Como la oferta es igual a la demanda; es decir, \(Q_D(t) = Q_S(t) \). Entonces

\[
e^{-t}\ln t + 2p(t) - \frac{1}{2} p'(t) = 3p(t) + \frac{3}{2} p'(t) + p''(t);
\]

Así, obtenemos la EDO no homogénea

\[
p''(t) + 2p'(t) + p(t) = e^{-t}\ln t.
\]

(i) Para encontrar la solución homogénea \(p''(t) + 2p'(t) + p(t) = 0 \), vemos que su ecuación auxiliar asociada es

\[
r^2 + 2r + 1 = (r + 1)^2 = 0,
\]

de donde \(r = -1 \), por lo que la solución homogénea está dada por

\[
p_h(t) = C_1 e^{-t} + C_2 te^{-t} = C_1 y_1(t) + C_2 y_2(t).
\]

(ii) Por otro lado, en el caso de la solución particular, vemos que

\[
p_p(t) = C_1 (t) e^{-t} + C_2 (t) te^{-t},
\]

donde

\[
W[y_1, y_2](t) = \begin{vmatrix} e^{-t} & te^{-t} \\ -e^{-t} & e^{-t} - te^{-t} \end{vmatrix} = e^{-2t}.
\]

Luego, vemos que

\[
C_1(t) = -\int \frac{y_2 f(t)}{W[y_1, y_2](t)} dt = -\int \frac{te^{-t} e^{-t}\ln t}{e^{-2t}} dt = -\int t \ln t dt = -\frac{1}{2} \left(\ln t - \frac{1}{2} \right) t^2
\]

y

\[
C_2(t) = \int \frac{y_1 f(t)}{W[y_1, y_2](t)} dt = \int \frac{e^{-t} e^{-t}\ln t}{e^{-2t}} dt = \int \ln t dt = t (\ln t - 1)
\]

(iii) Finalmente, la solución general está dada por

\[
p(t) = C_1 e^{-t} + C_2 te^{-t} - \frac{1}{2} t^2 \left(\ln t - \frac{1}{2} \right) e^{-t} + t^2 (\ln t - 1) e^{-t}.
\]

2.3 Ecuaciones diferenciales lineales de orden superior

En esta sección estudiaremos las ecuaciones diferenciales lineales con coeficientes constantes y de orden \(n \) de la forma

\[
a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \cdots + a_1(x) y' + a_0(x) y = f(x).
\]

En este caso un problema de valor inicial (PVI) consiste en

\[
\begin{cases}
a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \cdots + a_1(x) y' + a_0(x) y = f(x) \\
y(x_0) = y_0, y'(x_0) = y_1, \cdots, y^{(n-1)}(x_0) = y_{n-1}
\end{cases}
\]
Ahora, enunciamos el siguiente teorema que ofrece las condiciones suficientes para la existencia de una solución única del problema (2.17).

Teorema 2.7: Existencia y unicidad

Sean \(a_n(x), a_{n-1}(x), \cdots, a_1(x), a_0(x) \) y \(f(x) \) continuas en un intervalo \(I \) y \(a_n(x) \neq 0 \) para cada \(x \) en este intervalo. Si \(x = x_0 \) es un punto en este intervalo, entonces una solución \(y(x) \) del PVI (2.17) existe y es única sobre el intervalo.

Definición 2.5

Una ecuación diferencial de orden \(n \) de la forma

\[
a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = 0 \tag{2.18}
\]

se dice que es homogénea, mientras que la ecuación (2.16) con \(f(x) \neq 0 \), se dice que es no homogénea.

En el próximo teorema veremos que la suma, o superposición, de dos o más soluciones de una ecuación diferencial lineal homogénea es también una solución.

Teorema 2.8: Principio de superposición

Sean \(y_1, y_2, \cdots, y_n \) soluciones linealmente independientes de la ecuación diferencial lineal de orden \(n \) en un intervalo \(I \). Entonces la combinación lineal

\[
y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),
\]

donde \(c_i, i = 1, 2, \cdots, n \) son constantes, es también solución sobre el intervalo \(I \).

Prueba.

Probamos para el caso \(n = 2 \). Sea \(L \) el operador diferencial, definido por

\[
L = a_2(x)D^2 + \cdots + a_1(x)D + a_0(x),
\]

y sean \(y_1, y_2 \) soluciones de la ecuación homogénea \(L(y) = 0 \). Si definimos \(y = c_1 y_1(x) + c_2 y_2(x) \), entonces por la linealidad de \(L \) tenemos

\[
L(y) = L(c_1 y_1(x) + c_2 y_2(x)) = c_1 L(y_1) + c_2 L(y_2)
\]

\[
= c_1 \cdot 0 + c_2 \cdot 0.
\]

Notemos que una ecuación diferencial lineal homogénea siempre posee la solución trivial \(y = 0 \).

Ejemplo 2.26

Las funciones \(y_1(x) = x^2 \) y \(y = x^2 \ln x \) son ambas soluciones de la ecuación lineal homogénea

\[
x^4y''' - 2xy' + 4y = 0
\]

sobre el intervalo \((0, +\infty) \). Por el principio de superposición la combinación lineal

\[
y = c_1 x^2 + c_2 x^2 \ln x
\]

es también una solución sobre el intervalo.

A continuación, mostramos definiciones que son básicas e importantes para el estudio de las ecuaciones diferenciales lineales de orden \(n \).
Definición 2.6: Dependencia lineal e independencia lineal

Un conjunto de funciones $f_1(x), f_2(x), \cdots, f_n(x)$ se dicen que son linealmente dependientes sobre un intervalo I si existen constantes c_1, c_2, \cdots, c_n no todas cero tal que

$$c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x) = 0$$

para todo $x \in I$. Si el conjunto de funciones no es linealmente dependientes sobre el intervalo I, se dice que es linealmente independiente sobre el intervalo I.

Esta última definición nos dice que, un conjunto de funciones, es linealmente independiente sobre el intervalo, si al formar la combinación lineal nula:

$$c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x) = 0$$

para cada x en el intervalo, implica que $c_1 = c_2 = \cdots = c_n = 0$.

Definición 2.7: Wronskiano

Supongamos que cada una de las funciones $f_1(x), f_2(x), \cdots, f_n(x)$ poseen al menos $(n - 1)$ derivadas. El determinante

$$W(f_1, f_2, \cdots, f_n)(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}$$

es llamado el Wronskiano de estas funciones.

Teorema 2.9: Criterio para soluciones linealmente independientes

Sean y_1, y_2, \cdots, y_n, n soluciones de la ecuación diferencial homogénea lineal de orden n (2.18) sobre el intervalo I. Entonces el conjunto de soluciones es linealmente independientes sobre I si y solo si $W(y_1, y_2, \cdots, y_n)(x) \neq 0$ para cada x en el intervalo.

Del teorema anterior se sigue que, cuando y_1, y_2, \cdots, y_n son n soluciones de (2.18) sobre el intervalo I, el Wronskiano $W(y_1, y_2, \cdots, y_n)(x)$ no es cero sobre el intervalo.

Definición 2.8: Conjunto fundamental de soluciones

Un conjunto y_1, y_2, \cdots, y_n de n soluciones linealmente independientes de la ecuación diferencial lineal de orden n (2.18) sobre el intervalo I, es llamado un conjunto fundamental de soluciones sobre I.

La pregunta básica de si existe un conjunto fundamental de soluciones para una ecuación lineal, se responde en el siguiente teorema.

Teorema 2.10: Existencia de un conjunto fundamental

Existe un conjunto fundamental de soluciones para (2.18) sobre el intervalo I.
Teorema 2.11: Solución general de ecuaciones homogéneas

Sean un conjunto fundamental de soluciones de (2.18) sobre el intervalo \(I \). Entonces la solución general de la ecuación sobre el intervalo es

\[y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x), \]

donde \(c_i, i = 1, 2, \ldots, n \) son constantes arbitrarias.

2.3.1 Ecuaciones lineales homogéneas con coeficientes constantes

Las ecuaciones diferenciales homogéneas de orden \(n \) con coeficientes constantes, son de la forma

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0, \quad (2.19) \]

donde \(a_n, a_{n-1}, \ldots, a_1, a_0 \) son constantes reales.

De manera similar como fue trabajado para el caso de \(n = 2 \); tenemos que la ecuación auxiliar asociada es

\[a_n r^n + a_{n-1} r^{n-1} + \cdots + a_1 r + a_0 = 0 \quad (2.20) \]

Ahora analizando las raíces de (2.20), tenemos los siguientes casos:

Caso 1: Raíces reales distintas.
Si (2.20) tiene raíces reales y diferente \(r_1, r_2, \ldots, r_n \). Tenemos que la solución general de (2.19) es

\[y(x) = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x) \]

\[= C_1 e^{r_1 x} + C_2 e^{r_2 x} + \cdots + C_n e^{r_n x} \]

Ejemplo 2.27

Resolver

1. \(y''' - 2y'' - 5y' + 6y = 0 \)
2. \(y^{(4)} + 2y''' - 13y'' + 10y' = 0 \)
3. \(y''' + 2y'' - 19y' - 20y = 0 \)

Solución.

1. La ecuación auxiliar asociada es:

\[r^3 - 2r^2 - 5r + 6 = (r - 1) (r - 3) (r + 2) = 0 \Rightarrow r_1 = -2, \ r_2 = 1, \ r_3 = 3. \]

entonces la solución general es:

\[y = C_1 e^{-2x} + C_2 e^x + C_3 e^{3x}. \]

2. La ecuación auxiliar asociada es:

\[r^4 + 2r^3 - 13r^2 + 10r = r (r + 5) (r - 1) (r - 2) = 0 \Rightarrow r_1 = -5, \ r_2 = 0, \ r_3 = 1, \ r_4 = 2. \]

entonces la solución general es:

\[y = C_1 e^{-5x} + C_2 + C_3 e^x + C_4 e^{2x}. \]
3. La ecuación auxiliar asociada es:
\[r^3 + 2r^2 - 19r - 20 = (r + 5)(r - 4)(r + 1) = 0 \Rightarrow r_1 = -5, \ r_2 = -1, \ r_3 = 4. \]
entonces la solución general es:
\[y = C_1 e^{-5x} + C_2 e^{-x} + C_3 e^{4x}. \]

Caso 2: Raíces repetidas.
Si \(r_1 \) es una raíz repetida de la ecuación auxiliar asociada de multiplicidad algebraica \(m \), con \(m < n \), entonces las funciones
\[y_1 (x) = e^{r_1 x}, \ y_2 (x) = xe^{r_1 x}, \ y_3 (x) = x^2 e^{r_1 x}, \ \cdots, \ y_m (x) = x^{m-1} e^{r_1 x}, \]
on son \(m \) soluciones linealmente independientes de la ecuación (2.20).
Si las demás raíces de la ecuación auxiliar asociada son reales y diferentes: \(r_2, r_3, \cdots, r_k \) entonces la solución general de (2.19) es
\[y(x) = C_1 e^{r_1 x} + C_2 xe^{r_1 x} + \cdots + C_m x^{m-1} e^{r_1 x} + C_{m+1} e^{r_2 x} + \cdots + C_n e^{r_k x} \]
donde \(m + k = n \).

Ejemplo 2.28
Resolver \(y^{(4)} - y''' - 3y'' + 5y' - 2y = 0. \)

Solución.
La ecuación auxiliar asociada está dada por
\[r^4 - 7r^3 + 12r^2 - 2r - 2 = (r + 2)(r - 1)^3 = 0 \Rightarrow r_1 = -2, \ r_2 = 1, \text{ con multiplicidad } m = 3. \]
entonces la solución general es:
\[y(x) = C_1 e^{-2x} + C_2 e^x + C_3 x e^x + C_3 x^2 e^x. \]

Ejemplo 2.29
Resolver \(y^{(5)} - 7y''' - 2y'' + 12y' + 8y = 0. \)

Solución.
La ecuación auxiliar asociada es:
\[r^5 - 7r^3 - 2r^2 + 12r + 8 = (r + 2)(r - 1)^2(r - 2)^2 = 0 \Rightarrow r_1 = -2, \ r_2 = 1, \ r_3 = 2. \]
entonces la solución general es:
\[y(x) = C_1 e^{-2x} + C_2 e^x + C_3 x e^{-x} + C_4 e^{2x} + C_5 x e^{2x}. \]

Caso 3: Raíces Complejas
Si \(r = a + ib \) es una raíz compleja repetida de multiplicidad algebraica \(m \) de la ecuación auxiliar asociada, entonces existen \(2m \) soluciones linealmente independientes de la ecuación homogénea:
\[e^{ax} \cos (bx), \ xe^{ax} \cos (bx), \cdots, \ x^{m-1} e^{ax} \cos (bx) \]
\[e^{ax} \sen (bx), \ xe^{ax} \sen (bx), \cdots, \ x^{m-1} e^{ax} \sen (bx). \]
Ecuaciones diferenciales lineales de orden superior

Ejemplo 2.30

Encuentre la solución general de las ecuaciones diferenciales homogéneas con coeficientes constantes cuyas ecuaciones auxiliares se indican:

(a) \((r - 12)^2 (r + 5) (r^2 + 3r + 3)^3 = 0\)

(b) \((r + 4) (r - 3) (r - 2)^4 (r^2 + 4r + 5)^2 = 0\)

Solución.

(a) Sean \(r_1 = 12\) con m.a. \(m = 2\), \(r_2 = -5\) y como \(r^2 + 3r + 3 = \left(\frac{r + 3}{2}\right)^2 + \frac{3}{4} = 0 \Rightarrow r_3 = -\frac{3}{2} \pm \frac{\sqrt{3}}{2} i\), es una raíz repetida de multiplicidad \(m = 3\). La solución general es:

\[
y(x) = C_1 e^{12x} + C_2 xe^{12x} + C_3 e^{-5x} + e^{-3/2x} \left(C_4 \text{sen} \left(\frac{\sqrt{3}}{2} x \right) + C_5 \cos \left(\frac{\sqrt{3}}{2} x \right) \right) + xe^{-3/2x} \left(C_6 \text{sen} \left(\frac{\sqrt{3}}{2} x \right) + C_7 e^{-3/2x} \cos \left(\frac{\sqrt{3}}{2} x \right) \right) + x^2 e^{-3/2x} \left(C_8 \text{sen} \left(\frac{\sqrt{3}}{2} x \right) + C_9 e^{-3/2x} \cos \left(\frac{\sqrt{3}}{2} x \right) \right).
\]

(b) Sean \(r_1 = -4\), \(r_2 = 3\), \(r_3 = 2\) con multiplicidad \(m = 4\) y de \(r^2 + 4r + 5 = 0 \Rightarrow (r + 2)^2 + 1 = 0 \Rightarrow r_4 = -2 \pm i\), es una raíz repetida de multiplicidad \(m = 2\). Luego, la solución general es

\[
y(x) = C_1 e^{-4x} + C_2 e^{3x} + \left(C_3 + C_4 x + C_5 x^2 + C_6 x^3 \right) e^{2x} + e^{-2x} \left(C_7 \text{sen} x + C_8 \cos x \right) + xe^{-2x} \left(C_9 \text{sen} x + C_{10} \cos x \right).
\]

Ejemplo 2.31

Resolver \(y^{(4)} - 8y''' + 26y'' - 40y' + 25y = 0\)

Solución.

La ecuación auxiliar asociada es \(r^4 - 8r^3 + 26r^2 - 40r + 25\) que es equivalente a

\[(r^2 - 2r + 5)^2 = \left((r - 2)^2 + 1 \right)^2 = 0 \Rightarrow r = 2 \pm i\], es una raíz repetida de multiplicidad \(m = 2\).

Así, la solución general es

\[
y(x) = e^{2x} \left(C_1 \text{sen} x + C_2 \cos x \right) + xe^{2x} \left(C_1 \text{cos} x + C_2 \text{sen} x \right).
\]

2.3.2 Ecuaciones lineales no homogéneas con coeficientes constantes

Nuestro objetivo es encontrar una solución general de

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = f(x), \quad (2.21)\]

donde \(a_n, a_{n-1}, \cdots, a_1, a_0\) son constantes reales.

Primero, hallamos la solución homogénea \(y_h\), correspondiente a la solución de

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0, \quad (2.22)\]

cuya ecuación auxiliar asociada es

\[a_n r^n + a_{n-1} r^{n-1} + \cdots + a_1 r + a_0 = 0.\]
Si \(\{ y_1 (x), y_2 (x), \ldots, y_n (x) \} \) es un conjunto fundamental de soluciones, entonces como sabemos la solución homogénea es
\[
y_h (x) = C_1 y_1 (x) + C_2 y_2 (x) + \cdots + C_n y_n (x),
\]
donde \(C_1, C_2, \ldots, C_n \) son constantes arbitrarias.
En segundo lugar, hallamos la solución particular.

Definición 2.9
Una función \(y_p \), libre de parámetros arbitrarios, que satisfacen (2.21) se dice que es una solución particular de la ecuación.

Ejemplo 2.32
La función constante \(y_p = 5 \) es una solución particular de \(y'' + 3y = 15 \).

Ahora, si \(y_1, y_2, \ldots, y_k \) son soluciones de (2.22) sobre un intervalo \(I \) y \(y_p \) es una solución de (2.21) sobre \(I \), entonces la combinación lineal
\[
y(x) = C_1 y_1 (x) + C_2 y_2 (x) + \cdots + C_k y_k (x) + y_p (x)
\]
también es solución de la ecuación no homogénea (2.21).

Teorema 2.12
Sea \(y_p \) una solución particular de (2.21) sobre \(I \), y sea \(\{ y_1 (x), y_2 (x), \ldots, y_n (x) \} \) un conjunto fundamental de soluciones de (2.22) sobre \(I \). Entonces la solución general de la ecuación diferencial (2.21) sobre el intervalo \(I \) es
\[
y(x) = C_1 y_1 (x) + C_2 y_2 (x) + \cdots + C_n y_n (x) + y_p (x),
\]
donde \(C_i, i = 1, 2, \ldots, n \) son constantes arbitrarias.

Prueba.
Sea \(L \) el operador diferencial definido por
\[
L = a_n (x) D^n + a_{n-1} D^{n-1} + \cdots + a_1 (x) D + a_0 (x)
\]
y sean \(Y (x) \) y \(y_p (x) \) soluciones particulares de la ecuación no homogénea \(L (y) = f (x) \). Si definimos \(u (x) = Y (x) - y_p (x) \), entonces por la linealidad de \(L \) tenemos
\[
L (u (x)) = L (Y (x) - y_p (x)) = L (Y (x)) - L (y_p (x)) = 0,
\]
esto prueba que \(u (x) \) es una solución de la ecuación homogénea \(L (y) = 0 \). De aquí por el teorema 15,
\[
u (x) = C_1 y_1 (x) + C_2 y_2 (x) + \cdots + C_n y_n (x)
\]
y así,
\[
Y (x) - y_p (x) = u (x) = C_1 y_1 (x) + C_2 y_2 (x) + \cdots + C_n y_n (x)
\]
o
\[
Y (x) = C_1 y_1 (x) + C_2 y_2 (x) + \cdots + C_n y_n (x) + y_p (x).
\]

Observación. Vemos en el teorema 16 que la solución general del problema no homogéneo (2.21) consiste de la suma de dos funciones
\[
y(x) = y_h (x) + y_p (x),
\]
donde \(y_h(x) = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x) \), el cual es solución general del problema homogéneo (2.22), y es denominada la solución homogénea de (2.21).

Como para el caso de las ecuaciones diferenciales de segundo orden, usaremos los siguientes métodos:

Método 1: Coeficientes indeterminados

Ejemplo 2.33

Resolver \(y''' - 6y'' = 3 - \cos x \)

Solución.
(i) Solución homogénea \(y''' - 6y'' = 0 \), la ecuación auxiliar asociada es \(r^3 - 6r^2 = r^2(r - 6) = 0 \) de donde tenemos \(r_1 = 0 \) de multiplicidad algebraica \(m = 2 \), y \(r_2 = 6 \). Luego, la solución es
\[
y_h = C_1 e^{0x} + C_2 x e^{0x} + C_3 e^{6x} = C_1 y_1(x) + C_2 y_2(x) + C_3 y_3(x)
\]
(ii) Solución particular. Escogemos \(y_p = Ax^2 + B \cos x + C \sin x \) ya que \(y_1(x) = 1 \) y \(y_2(x) = x \) son soluciones del problema homogéneo. Luego
\[
y_p' = 2Ax - B \sin x + C \cos x, \quad y_p'' = 2A - B \cos x - C \sin x, \quad y_p''' = 0 + B \cos x - C \sin x
\]
reemplazando en la EDO
\[
y_p''' - 6y_p'' = B \sin x - C \cos x - 12A + 6B \cos x + 6C \sin x
\]
\[
= -12A + (6B - C) \cos x + (6C + B) \sin x = 3 - \cos x + 0 \sin x
\]
de donde
\[
\begin{align*}
-12A &= 3 \\
6B - C &= -1 \quad \Rightarrow A = -\frac{1}{4}, \quad B = \frac{6}{37}, \quad C = \frac{1}{37}
\end{align*}
\]
por lo tanto, \(y_p = -\frac{1}{4} x^2 - \frac{6}{37} \cos x + \frac{1}{37} \sin x \).
(iii) Solución general
\[
y(x) = y_h + y_p = C_1 + C_2 x + C_3 e^{6x} - \frac{1}{4} x^2 - \frac{6}{37} \cos x + \frac{1}{37} \sin x.
\]

Ejemplo 2.34

Resolver \(y^{(4)} + 2y'' + y = (x - 1)^2 \).

Solución.
(i) Solución homogénea: La ecuación auxiliar asociada a \(y^{(4)} + 2y'' + y = 0 \), es \(r^4 + 2r^2 + 1 = (r^2 + 1)^2 = 0 \) de donde obtenemos \(r = 0 \pm i \) de multiplicidad algebraica \(m = 2 \). Luego, la solución de la EDO homogénea es
\[
y_h(x) = e^{0x} (C_1 \cos x + C_2 \sin x) + x e^{0x} (C_3 \cos x + C_4 \sin x)
\]
\[
= C_1 \cos x + C_2 \sin x + C_3 x \cos x + C_4 x \sin x = C_1 y_1(x) + C_2 y_2(x) + C_3 y_3(x) + C_4 y_4(x)
\]
Ejemplo 2.35

Resuelva $y''' - 2y'' - 4y' + 8y = 6xe^{2x}$.

Solución.

(i) Solución homogénea $y''' - 2y'' - 4y' + 8y = 0$, la ecuación auxiliar asociada es $r^3 - 2r^2 - 4r + 8 = (r + 2)(r - 2)^2 = 0$

de donde $r_1 = -2$ y $r_2 = 2$ de multiplicidad algebraica $m = 2$. Luego, la solución es $y_h = C_1e^{-2x} + C_2e^{2x} + C_3xe^{2x}$.

(ii) Solución particular. Notemos que $y_3(x) = xe^{2x}$ es solución del problema homogéneo, por lo que escogemos $y_p = Ax^2e^{2x}$. Entonces

\[y_p' = 2Ax^2e^{2x} + 2Axe^{2x}, \quad y_p'' = 4Ax^2e^{2x} + 8Axe^{2x} + 2Ae^{2x} \]
\[y_p''' = 8Ax^2e^{2x} + 24Axe^{2x} + 12Ae^{2x} \]

y reemplazando en la EDO obtenemos

\[y_p''' - 2y_p'' - 4y_p' + 8y_p = 8Ax^2e^{2x} + 24Axe^{2x} + 12Ae^{2x} - 2(4Ax^2e^{2x} + 8Axe^{2x} + 2Ae^{2x}) \]
\[- 4(2Ax^2e^{2x} + 2Ae^{2x}) + 8Ax^2e^{2x} \]
\[= 8Ax^2e^{2x} \]

de donde $A = 3/4$ y la solución particular es $y_p = \frac{3}{4}x^2e^{2x}$.

(iii) Solución general

\[y = C_1e^{-2x} + C_2e^{2x} + C_3xe^{2x} + \frac{3}{4}C_4x^2e^{2x}. \]
Método 2: variación de parámetros

Este método consiste en suponer que existe una solución particular de (1) de la forma

\[y_p(x) = C_1(x) y_1(x) + C_2(x) y_2(x) + \cdots + C_n(x) y_n(x) \]

y se trata de hallar las \(n \) funciones \(C_1(x), C_2(x), \cdots, C_n(x) \).

Como hay \(n \) incógnitas, se requerirán \(n \) condiciones o ecuaciones para determinarlas, dichas condiciones se obtienen de la manera siguiente: Derivando \(y_p \) resulta

\[y_p'(x) = C_1(x) y_1'(x) + C_2(x) y_2'(x) + \cdots + C_n(x) y_n'(x) + C_1'(x) y_1(x) + C_2'(x) y_2(x) + \cdots + C_n'(x) y_n(x) \]

Para evitar la presencia de las segundas derivadas y las de orden superior en las incógnitas, se requerirán

\[C_1(x), C_2(x), \cdots, C_n(x), \]

en los cálculos posteriores, imponemos la condición

\[C_1'(x) y_1(x) + C_2'(x) y_2(x) + \cdots + C_n'(x) y_n(x) = 0. \]

De manera semejante,

\[y''_p(x) = C_1(x) y''_1(x) + C_2(x) y''_2(x) + \cdots + C_n(x) y''_n(x) + C_1'(x) y'_1(x) + C_2'(x) y'_2(x) + \cdots + C_n'(x) y'_n(x) \]

luego hacemos

\[C_1'(x) y'_1(x) + C_2'(x) y'_2(x) + \cdots + C_n'(x) y'_n(x) = 0 \]

y así sucesivamente.

Por lo tanto, buscamos las \(n \) funciones \(C'_1(x), C'_2(x), \cdots, C'_n(x) \) que satisfacen el sistema

\[
\begin{align*}
C'_1(x) y_1(x) + C'_2(x) y_2(x) + \cdots + C'_n(x) y_n(x) &= 0 \\
C'_1(x) y'_1(x) + C'_2(x) y'_2(x) + \cdots + C'_n(x) y'_n(x) &= 0 \\
& \vdots \\
C'_1(x) y'^{(n-1)}_1(x) + C'_2(x) y'^{(n-1)}_2(x) + \cdots + C'_n(x) y'^{(n-1)}_n(x) &= f(x)
\end{align*}
\]

Como \(\{y_1(x), y_2(x), \cdots, y_n(x)\} \) es un conjunto fundamental de soluciones, entonces

\[W[y_1, y_2, \cdots, y_n](x) \neq 0 \]

Así, para resolver el sistema utilizamos la regla de Cramer

\[C'_k(x) = \frac{f(x) W_k(x)}{W[y_1, y_2, \cdots, y_n](x)}, \quad k = 1, 2, \cdots, n \]

donde, usando el desarrollo de cofactores respecto a la k-ésima columna,

\[W_k(x) = (-1)^{n-k} W[y_1, y_2, \cdots, y_{k-1}, y_{k+1}, \cdots, y_n](x), \quad k = 1, 2, \cdots, n. \]

Integrando, resulta

\[C_k(x) = \frac{1}{W[y_1, y_2, \cdots, y_n](x)} \int f(x) W_k(x) \, dx, \quad k = 1, 2, \cdots, n \]

De esta manera, la solución particular es

\[y_p(x) = C_1(x) y_1(x) + C_2(x) y_2(x) + \cdots + C_n(x) y_n(x) = \sum_{k=1}^{n} C_k(x) y_k(x) \]

\[= \sum_{k=1}^{n} y_k(x) \frac{f(x) W_k(x)}{W[y_1, y_2, \cdots, y_n](x)} \, dx, \quad k = 1, 2, \cdots, n. \]
Ejemplo 2.36

Resolver \(y'' + y = \tan x \)

Solución.
(i) Solución homogénea \(y_h \): La ecuación auxiliar asociada es \(r^2 + 1 = 0 \) \(\Rightarrow r = 0 \pm i \) entonces \(y_h = C_1 \cos x + C_2 \sin x \).

(ii) Solución particular: \(y_p = C_1(x) \cos x + C_2(x) \sin x \).

\[
W[y_1, y_2](x) = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1,
\]

para \(k = 1 \) y \(n = 2 \), \(W_1(x) = (-1)^{2-1} W[y_2](x) = -|\sin x| = -\sin x \), y para \(k = 2 \) y \(n = 2 \), \(W_2(x) = (-1)^{2-2} W[y_1](x) = |\cos x| = \cos x \).

Luego

\[
C_1(x) = \int \frac{f(x)W_1(x)}{W[y_1, y_2](x)} \, dx = -\int \frac{f(x)y_2(x)}{W[y_1, y_2](x)} \, dx = \int \frac{\tan x(-\sin x)}{1} \, dx
\]

\[
= -\int \frac{\sin^2 x}{\cos x} \, dx = -\int \frac{1-\cos^2 x}{\cos x} \, dx = \int (\cos x - \sec x) \, dx = \sin x - \ln|\sec x + \tan x|
\]

y

\[
C_2(x) = \int \frac{f(x)W_2(x)}{W[y_1, y_2](x)} \, dx = \int \frac{f(x)y_1(x)}{W[y_1, y_2](x)} \, dx
\]

\[
= \int \frac{\tan x \cos x}{1} \, dx = \int \sec x \, dx = -\cos x
\]

entonces, la solución particular es

\[
y_p = (\sin x - \ln|\sec x + \tan x|) \cos x - \cos x \sin x = -\cos x \ln|\sec x + \tan x|.
\]

(iii) Solución general

\[
y(x) = C_1 \cos x + C_2 \sin x - \cos x \ln|\sec x + \tan x|.
\]

Ejemplo 2.37

Usando el método de variación de parámetros, halle la solución general de:

\(y''' - 2y'' - 4y' + 8y = xe^{2x} \).

Solución.
(i) Solución homogénea: La ecuación auxiliar asociada es \(r^3 - 2r^2 - 4r + 8 = (r-2)^2(r+2) = 0 \) entonces la solución homogénea es \(y_h = Ae^{-2x} + Be^{2x} + Cxe^{2x} \).

(ii) Solución particular: \(y_p = C_1(x) e^{-2x} + C_2(x) e^{2x} + C_3(x) xe^{2x} \).

\[
W[y_1, y_2, y_3](x) = \begin{vmatrix} e^{-2x} & e^{2x} & xe^{2x} \\ -2e^{-2x} & 2e^{2x} & e^{2x} + 2xe^{2x} \\ 4e^{-2x} & 4e^{2x} & 4e^{2x} + 4xe^{2x} \end{vmatrix} = 16e^{2x}
\]
Ecuaciones diferenciales lineales de orden superior

Luego, usando

\[y'' = 1, 2, 3. \]

Solución.

(ii) Solución particular

\[y'' + y' = 0. \]

La ecuación auxiliar asociada al problema homogéneo es

\[r^3 + r = 0. \]

Luego, la solución homogénea es

\[y_h = C_1 e^{0x} + e^{0x} (C_2 \cos x + C_3 \sen x). \]

(ii) Solución particular

\[y_p = C_1 (x) e^{-2x} + C_2 (x) e^{2x} + C_3 (x) x e^{2x}. \]

(iii) Finalmente, la solución general es

\[y = y_h + y_p = C_1 (x) e^{-2x} + C_2 (x) e^{2x} + C_3 (x) x e^{2x} + \frac{e^{2x}}{256} (4x - 1) + \frac{4}{16} (1 + 4x) + \frac{1}{8} x^3 e^{2x}. \]

Ejemplo 2.38

Resolver \(y''' + y' = \tan x, \ 0 < x < \pi/2. \)

Solución.

(i) Solución homogénea

\[y'' + y' = 0. \]

La ecuación auxiliar asociada al problema homogéneo es

\[r^3 + r = 0. \]

Luego, la solución homogénea es

\[y_h = C_1 e^{0x} + e^{0x} (C_2 \cos x + C_3 \sen x) = C_1 e^{0x} + C_2 \cos x + C_3 \sen x. \]

(ii) Solución particular

\[y_p = C_1 (x) \cos x + C_2 (x) \sen x \text{ y } C_3 (x) \sen x. \]

Hallamos las funciones \(C_i (x) \) para \(i = 1, 2, 3. \)

\[W[y_1, y_2, y_3](x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} \cos x & \sen x \\ -\sen x & \cos x \\ -\cos x & -\sen x \end{vmatrix} = 1. \]
Enseguida, hallamos \(W_k(x) \), \(k = 1, 2, 3 \).

Para \(k = 1 \)

\[
W_1(x) = (-1)^{3-1} W [y_2, y_3] = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1,
\]

para \(k = 2 \)

\[
W_2(x) = (-1)^{3-2} W [y_1, y_3] = \begin{vmatrix} 1 & \sin x \\ 0 & \cos x \end{vmatrix} = -\cos x
\]

y para \(k = 3 \)

\[
W_3(x) = (-1)^{3-3} W [y_1, y_2] = \begin{vmatrix} 1 & \cos x \\ 0 & -\sin x \end{vmatrix} = -\sin x.
\]

Luego, usando

\[
C_k(x) = \int \frac{f(x) W_k(x)}{W(y_1, y_2, y_3)(x)} \, dx, \quad k = 1, 2, 3
\]

tenemos que

\[
C_1(x) = \int \tan x \, dx = \ln |\sec x|,
\]

\[
C_2(x) = \int \tan x (-\cos x) \, dx = -\int \sin x \, dx = \cos x
\]

y

\[
C_3(x) = -\int \tan x \sin x \, dx = -\int \frac{\sin^2 x}{\cos x} \, dx = \int \frac{\cos^2 x - 1}{\cos x} \, dx = \int (\cos x - \sec x) \, dx
\]

\[
= \cos x - \ln |\sec x + \tan x|.
\]

Así, la solución particular es

\[
y_p = C_1(x) + C_2(x) \cos x + C_3(x) \sin x = -\ln |\cos x| + \cos^2 x + (\sin x - \ln |\sec x + \tan x|) \sin x.
\]

(iii) Finalmente, la solución general es

\[
y = y_h + y_p
\]

\[
= C_1 + C_2 \cos x + C_3 \sin x - \ln |\cos x| + \cos^2 x + (\sin x - \ln |\sec x + \tan x|) \sin x.
\]

\[\textbf{Ejemplo 2.39}\]

Resolver \(y''' + y' = \sec x \tan x \).

\[\textbf{Solución.}\]

(i) Solución homogénea: \(y''' + y' = 0 \). La ecuación auxiliar asociada al problema homogéneo es \(r^3 + r = r (r^2 + 1) \) entonces la solución homogénea es

\[
y_h = C_1 e^{0x} + e^{0x} (C_2 \cos x + C_3 \sin x) = C_1 + C_2 \cos x + C_3 \sin x.
\]

(ii) Solución particular \(y_p = C_1(x) + C_2(x) \cos x + C_3(x) \sin x \). Hallamos las funciones \(C_i(x) \) para

\[
C_i(x) = \int \frac{f(x) W_i(x)}{W(y_1, y_2, y_3)(x)} \, dx, \quad i = 1, 2, 3
\]

\[
C_1(x) = \int \tan x \, dx = \ln |\sec x|,
\]

\[
C_2(x) = \int \tan x (-\cos x) \, dx = -\int \sin x \, dx = \cos x
\]

y

\[
C_3(x) = -\int \tan x \sin x \, dx = -\int \frac{\sin^2 x}{\cos x} \, dx = \int \frac{\cos^2 x - 1}{\cos x} \, dx = \int (\cos x - \sec x) \, dx
\]

\[
= \cos x - \ln |\sec x + \tan x|.
\]
\(i = 1, 2, 3. \)

\[
W [y_1, y_2, y_3] (x) = \begin{vmatrix}
1 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
0 & -\cos x & -\sin x
\end{vmatrix} = \begin{vmatrix}
-\sin x & \cos x \\
-\cos x & -\sin x
\end{vmatrix} = 1
\]

\[
W_1 = (-1)^{3-1} W [y_2, y_3] = \begin{vmatrix}
\cos x & \sin x \\
-\sin x & \cos x
\end{vmatrix} = 1
\]

\[
W_2 = (-1)^{3-2} W [y_1, y_3] = \begin{vmatrix}
1 & \sin x \\
0 & \cos x
\end{vmatrix} = -\cos x
\]

\[
W_3 = (-1)^{3-3} W [y_1, y_2] = \begin{vmatrix}
1 & \cos x \\
0 & -\sin x
\end{vmatrix} = -\sin x
\]

\[
C_1 (x) = \int \frac{f (x) W_1 (x)}{W [y_1, y_2, y_3] (x)} dx = \int \sec x \tan x dx = \sec x,
\]

\[
C_2 (x) = \int \frac{f (x) W_2 (x)}{W [y_1, y_2, y_3] (x)} dx = -\int \cos x \cdot \sec x \tan x dx = -\int \tan x dx = \ln (\cos x)
\]

\[
y = C_1 + C_2 \cos x + C_3 \sin x + \sec x + \cos x \ln (\cos x) - \tan x \sin x.
\]
2.4 Problemas propuestos

1. Resolver
 a) \(y'' = xe^x\)
 b) \(xy'' = y'\ln\left(\frac{y'}{x}\right)\)

2. Halle una EDO homogénea lineal con coeficientes constantes cuya solución general es
 \[y(x) = (C_1 + C_2x)e^{3x} + C_3\cos(2x) + C_4\sen(2x)\]

3. Encuentre la solución general de las ecuaciones diferenciales homogéneas con coeficientes constantes cuyas ecuaciones auxiliares se indican:
 a) \((r - 1)^2(r + 3)(r - 9)(r^2 + 2r + 5)^2 = 0\)
 b) \((r + 4)(r - 3)(r + 2)^3(r^2 + 4r + 5)^2r^5 = 0\)
 c) \((r + 5)(r - 12)(r - 2)^4(r^2 + 3r + 3)^2 = 0\)
 d) \((r - 10)^2(r + 8)(r^2 + 3r + 3)^2 = 0\)

4. Encuentre la solución general de:
 a) \(49y'' + 14y' + y = 0\)
 b) \(y''' + 3y'' + 5y' + 3y = 0\)
 c) \(y^{(7)} - y^{(6)} - y^{(5)} - 5y^{(4)} + 6y''' = 0\)

5. Encuentre la solución general de
 \[y^{(6)} - 8y^{(5)} + 17y^{(4)} + 6y''' - 44y'' + 8y' + 32y = 0\]

6. Resolver los siguientes PVI
 \[\begin{align*}
 (a) & \quad y'' + y = 2e^x + x^2 + 2, \quad \begin{cases} y'' + 2y = e^x \sen x \\ y(0) = 1, \quad y'(0) = 3 \end{cases} \\
 (b) & \quad y''' + 2y' = e^x + x^2 + 2, \quad \begin{cases} y'' + 2y = e^x \sen x \\ y(0) = 1, \quad y'(0) = 2 \end{cases}
 \end{align*}\]
 aplicando el método de los coeficientes indeterminados.

7. Resolver el PVI
 \[\begin{cases} x^2y'' + xy' = 1 \\
 y(1) = 2, \quad y'(1) = 1 \end{cases}\]

8. Utilice el método de los coeficientes indeterminados, para determinar la forma de la solución particular de la ecuación dada.
 a) \(y'' + 6y' + 9y = 6e^{-3x}\)
 b) \(y''' - 3y'' + 4y = xe^{2x} - \cos x\)
 c) \(y''' - 2y'' - 5y' + 6y = e^x + x^2\)

9. Utilice el método de los coeficientes indeterminados, para hallar la solución general de:
Problemas propuestos

2. Ecuaciones diferenciales ordinarias de orden superior

a) \(y'' - 2y' - 3y = 3x^2 - 5 \)
b) \(y''' + 4y'' + y' - 26 = e^{-3x} \) \(\text{sen} \) \(2x + x \)
c) \(y'' + y' + y = \cos x - x^2 e^x \)
d) \(y'' + y'' - 2y = xe^x + 1 \)
e) \(y'' - 9y = e^{3t} + te^t \)
f) \(y''' - 3y'' + 3y' - y = e^x \)
g) \(y'' - 7y' + 6y = (x - 2)e^x \)
h) \(y''' - 3y'' + 4y = xe^{2x} - \cos x \)

10. Aplique el método de variación de parámetros, para hallar la solución general de:

a) \(y'' + 4y' + 4y = e^{-2x} \ln x, \quad x > 0 \)
b) \(y'' + 9y = \sec^2 (3x) \)
c) \(y'' - 2y' + 2y = e^x \cot x \)
d) \(y'' - 2y' + 1 = e^x \cdot 2^x \)
e) \(y'' + 4y = e^x \cos (2x) \)
f) \(y'' + y' = \sec x \tan x, \quad 0 < x < \pi/2 \)
g) \(y'' + 3y' + 2y = \sec (e^x) \)

11. Resolver

a) \(xy'' + 2y' = 6x \)
b) \(y'' + 9y = x^2 e^{2x} + x \text{sen} (3x) \)
c) \(y'' - 2y' + y = e^x \arctan x \)
d) \(y'' + y' - 2y = xe^x + 1 \)
e) \(y'' + 4y' + 4y = \frac{e^{-2x}}{x^3} \)
f) \(y'' - 2y' + y = e^x / x^5 \)
g) \(y'' - 3y' + 2y = \frac{e^x}{e^x + 1} \)

12. Aplicando el método de variación de parámetros, resuelva \(y'' + 2y' + y = x^{-p} e^{-x}, \) donde \(p \in \mathbb{Z}^+ \).

13. Dada la EDO: \(y'' + by' + cy = f(t), \) \(b \) y \(c \) constantes.

a) Halle \(a \) y \(c \), si una de las raíces de la ecuación auxiliar asociada es \(2 + 2i \).
b) Si \(f(t) = e^{2t} \cos (2t) \). Halle la solución general, utilizando el método de variación de parámetros.
Si f es una función de x y y, entonces una integral definida de la función con respecto a una de las variables, genera una función de la otra variable. Por ejemplo, supongamos que $f(x, y) = 3x y^2$ y x se mantiene constante; entonces, vemos que

$$
\int_0^1 f(x, y)\,dy = \int_0^1 3xy^2 \,dy = x.
$$

De manera similar, una integral definida, tal como

$$
\int_a^b K(s, t)f(t)\,dt,
$$

transforma una función f que depende de t, a una función que depende de s.

En esta sección, nos interesarán en estudiar esta última transformación, llamada *transformada integral*, donde el intervalo de integración será el intervalo no acotado $[0, \infty]$.

Definición 3.1

Si f está definida para $t \geq 0$, entonces la integral impropia, definida como

$$
\int_0^{+\infty} K(s, t)f(t)\,dt = \lim_{b \to +\infty} \int_0^b K(s, t)f(t)\,dt,
$$

es convergente, si existe el límite; caso contrario, decimos que la integral es divergente.

En general, este límite solo existe para ciertos valores de s.
Definición 3.2

Sea \(f \) una función definida para todo \(t \geq 0 \) y \(s \) un parámetro real. La transformada de Laplace de \(f \) es la función \(F \) definida por

\[
F(s) = \int_0^{+\infty} e^{-st} f(t) \, dt, \tag{3.1}
\]

para aquellos valores de \(s \) para el cual la integral impropia es convergente.

La transformada de Laplace puede ser vista como un operador \(\mathcal{L} \) que transforma la función \(f = f(t) \) en la función \(F = F(s) \). Así, (3.1) puede ser expresada como \(\mathcal{L}\{f\} \). En el análisis general, cuando utilicemos letras minúsculas nos referiremos a la función que se va a transformar, y letras mayúsculas para representar su transformada de Laplace. Por ejemplo,

\[
\mathcal{L}\{f(t)\} = F(s), \quad \mathcal{L}\{g(t)\} = G(s), \quad \mathcal{L}\{y(t)\} = Y(s) \quad y \quad \mathcal{L}\{x(t)\} = X(t).
\]

 Ejemplo 3.1

Halle la transformada de Laplace de \(f(t) = 1 \).

Solución.

Usando la definición, tenemos

\[
\mathcal{L}\{1\} = \int_0^{+\infty} e^{-st} \cdot 1 \, dt = \lim_{b \to +\infty} \int_0^{b} e^{-st} \, dt = \frac{-e^{-st}}{s}\bigg|_0^b = \frac{-e^{-sb} + 1}{s} = \frac{1}{s},
\]

siempre que \(s > 0 \).

 Ejemplo 3.2

Calcule la transformada de Laplace de la función \(f(t) = k \), donde \(k \) es constante.

Solución.

Aplicando (3.1) con \(f(t) = k \) obtenemos

\[
\mathcal{L}\{k\} = \int_0^{+\infty} e^{-st} \cdot k \, dt = k \lim_{b \to +\infty} \int_0^{b} e^{-st} \, dt = k \lim_{b \to +\infty} \frac{-e^{-sb} + 1}{s} = \frac{k}{s}, \quad \text{si} \quad s > 0.
\]

 Ejemplo 3.3

Calcule \(\mathcal{L}\{f(t)\} \), si \(f(t) = t \).

Solución.
De (3.1) con \(f(t) = t \) e integrando por partes con \(u = t, dv = e^{-st} \, dt \), obtenemos

\[
\mathcal{L}\{t\} = \int_0^{+\infty} e^{-st} \, t \, dt = \lim_{b \to +\infty} \int_0^b e^{-st} \, t \, dt = \lim_{b \to +\infty} \left[\frac{e^{-st} \, b}{-s} \right]_0^b + \frac{1}{s} \int_0^b e^{-st} \, dt
\]

\[
= \lim_{b \to +\infty} \left[\frac{b e^{-sb}}{-s} + 0 + \frac{1}{s} \left(\frac{e^{-sb}}{-s} - 1 \right) \right] = 0 + \frac{1}{s} \frac{1}{s^2} = \frac{1}{s^2}, \quad \text{si} \quad s > 0.
\]

Vemos que el límite \(\lim_{b \to +\infty} b e^{-sb} = 0 \), pues, si cambiamos \(b \) por \(x \) y usamos la regla de l’Hospital, tenemos

\[
\lim_{x \to +\infty} x e^{-sx} = \lim_{x \to +\infty} \frac{x}{s e^{sx}} = \lim_{x \to +\infty} \frac{1}{s e^{sx}} = 0.
\]

Ejemplo 3.4

Calcule la transformada de Laplace de la función \(f(t) = e^{at} \).

Solución.

Aplicando (3.1) con \(f(t) = e^{at} \), tenemos que

\[
\mathcal{L}\{e^{at}\} = \int_0^{+\infty} e^{-st} \, e^{at} \, dt = \lim_{b \to +\infty} \int_0^b e^{(a-s)t} \, dt
\]

\[
= \lim_{b \to +\infty} \left[\frac{e^{(a-s)t} \, b}{a-s} \right]_0^b = \lim_{b \to +\infty} \left(\frac{e^{(a-s)b}}{a-s} - \frac{1}{s-a} \right)
\]

\[
= \frac{1}{s-a}, \quad \text{si} \quad s > a.
\]

Ejemplo 3.5

Halle la transformada de Laplace de \(f(t) = \sen(at) \).

Solución.

Aplicando (3.1) con \(f(t) = \sen(at) \) integrando por partes con

\[
u = \sen(at) \quad y \quad dv = e^{-st} \, dt,
\]

obtenemos

\[
\mathcal{L}\{\sen(at)\} = \int_0^{+\infty} e^{-st} \, \sen(at) \, dt = \lim_{b \to +\infty} \left[\frac{\sen(at) e^{-st} \, b}{-s} - a \int_0^b \cos(at) e^{-st} \, dt \right]
\]

\[
= \lim_{b \to +\infty} \left[\frac{\sen(ab) e^{-sb}}{-s} + \frac{a}{s} \int_0^b \cos(at) e^{-st} \, dt \right]
\]

\[
= \lim_{b \to +\infty} \frac{a}{s} \int_0^b \cos(at) e^{-st} \, dt.
\]

Nuevamente, integrando por partes con

\[
u = \cos(at) \quad y \quad dv = e^{-st} \, dt \implies du = -a \sen(at) \, dt \quad y \quad v = \frac{e^{-st}}{-s}
\]
Luego,
\[
\mathcal{L}\{\sin(at)\} = \lim_{b \to +\infty} \frac{a}{s} \left[\cos(at) \frac{e^{-st}}{-s} \bigg|_0^b - \int_0^b -a\sin(at) \frac{e^{-st}}{-s} \, dt \right]
\]
\[
= \lim_{b \to +\infty} \frac{a}{s} \left[0 + \frac{1}{s} - a \int_0^b \sin(at) \frac{e^{-st}}{-s} \, dt \right]
\]
\[
= \frac{a}{s^2} - \frac{a^2}{s^2} \mathcal{L}\{\sin(at)\} .
\]

Entonces,
\[
\left(1 + \frac{a^2}{s^2}\right) \mathcal{L}\{\sin(at)\} = \frac{a}{s^2} ,
\]
Así,
\[
\mathcal{L}\{\sin(at)\} = \frac{a}{s^2 + a^2} , \quad \text{si} \quad s > 0.
\]

Más adelante veremos que
\[
\mathcal{L}\{\cos(at)\} = \frac{s}{s^2 + a^2} , \quad \text{si} \quad s > 0.
\]

Ejemplo 3.6

Halle la transformada de Laplace de la función \(f\), definida por
\[
f(t) = \begin{cases}
2, & 0 < t < 5 \\
0, & 5 < t < 10 \\
e^{2t}, & t > 10
\end{cases}
\]

Solución.

Basta usar definición
\[
\mathcal{L}\{f(t)\} = \int_0^{+\infty} e^{-st} f(t) \, dt = 2 \int_0^5 e^{-st} \, dt + \int_5^{10} e^{-st} \, dt + \int_{10}^{+\infty} e^{-st} e^{2t} \, dt
\]
\[
= 2 \left. \frac{e^{-st}}{-s} \right|_0^5 + \lim_{b \to +\infty} \int_0^b e^{e^{2-t}t} \, dt
\]
\[
= 2 \left(\frac{e^{-5s}}{-s} + \frac{1}{s} \right) + \lim_{b \to +\infty} \int_0^b \left(e^{(4-s)t} - e^{(4-s)10} \right) \, dt
\]
\[
= 2 \left(\frac{e^{-5s}}{-s} + \frac{1}{s} \right) + \lim_{b \to +\infty} \left(\frac{e^{(4-s)b}}{4-s} - \frac{e^{(4-s)10}}{4-s} \right)
\]
\[
= 2 \left(\frac{e^{-5s}}{-s} + \frac{1}{s} \right) + \left(0 - \frac{e^{(4-s)10}}{4-s} \right) , \quad \text{si} \quad s > 4.
\]

Ejemplo 3.7

Calcule \(F(s)\), si la función \(f\) se define como
\[
f(t) = \begin{cases}
e^{2t}, & 0 < t < 3 \\
1, & t \geq 3
\end{cases}
\]

Solución.
Usando la definición, tenemos

\[F(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt = \int_{0}^{\infty} e^{-st} e^{2t} \, dt + \int_{0}^{\infty} e^{-st} \, dt \]

\[= \frac{e^{(2-s)t}}{2-s} \bigg|_{0}^{\infty} + \lim_{b \to +\infty} -\frac{e^{-st}}{s} \bigg|_{b}^{0} = \frac{e^{3(2-s)}}{2-s} - \frac{1}{2-s} + \lim_{b \to +\infty} \left(-\frac{e^{-sb}}{s} + \frac{1}{s} \right) \]

\[= \frac{e^{3(2-s)}}{2-s} - \frac{1}{2-s} + \frac{1}{s}, \quad \text{si } s > 0 \text{ con } s \neq 2. \]

Teorema 3.1: Propiedad de linealidad

La transformada de Laplace es lineal; es decir, para \(a \) y \(b \) constantes, \(f \) y \(g \) funciones reales entonces

\[\mathcal{L} \{ af(t) + bg(t) \} = a\mathcal{L} \{ f(t) \} + b\mathcal{L} \{ g(t) \}, \]

para aquellos valores de \(s \) para el cual ambas transformadas de Laplace existen.

Prueba.

Por definición, tenemos que

\[a\mathcal{L} \{ f(t) \} = a \int_{0}^{\infty} e^{-st} f(t) \, dt \quad \text{y} \quad b\mathcal{L} \{ g(t) \} = b \int_{0}^{\infty} e^{-st} g(t) \, dt \]

convergen para \(s > s_1 \) y \(s > s_2 \) respectivamente. Así, ambas convergen para \(s > \max\{s_1, s_2\} \), y

\[a\mathcal{L} \{ f(t) \} + b\mathcal{L} \{ g(t) \} = a \int_{0}^{\infty} e^{-st} f(t) \, dt + b \int_{0}^{\infty} e^{-st} g(t) \, dt \]

\[= \int_{0}^{\infty} e^{-st} \left[af(t) + bg(t) \right] \, dt \]

\[= \mathcal{L} \{ af(t) + bg(t) \}. \]

Ejemplo 3.8

Calcule la transformada de Laplace de \(f(t) \), si

(a) \(f(t) = 5 - 7e^{2t} + 4\cos(3t) \).

Solución.

Usando la linealidad de la transformada y los ejemplos anteriores tenemos que

\[\mathcal{L} \{5 - 7e^{2t} + 4\cos(3t)\} = \mathcal{L} \{5\} - 7\mathcal{L} \{e^{2t}\} + 4\mathcal{L} \{\cos(3t)\} \]

\[= 5 \left(\frac{1}{s} \right) - 7 \left(\frac{1}{s-2} \right) + 4 \left(\frac{s}{s^2 + 9} \right) \]

\[= \frac{5}{s} - \frac{7}{s-2} + \frac{4s}{s^2 + 9}, \quad \text{si } s > 2. \]

(b) \(f(t) = 9t + 2e^{-8t} - \sin(5t) \).

Solución.

Usando la linealidad de la transformada y los resultados de los ejemplos anteriores, obtenemos

\[\mathcal{L} \{9t + 2e^{-8t} - \sin(5t)\} = 9\mathcal{L} \{t\} + 2\mathcal{L} \{e^{-8t}\} - \mathcal{L} \{\sin(5t)\} \]

\[= 9 \left(\frac{1}{s^2} \right) + 2 \left(\frac{1}{s-(-8)} \right) - \frac{5}{s^2 + 25} \]

\[= \frac{9}{s^2} + \frac{2}{s+8} - \frac{5}{s^2 + 25}, \quad \text{si } s > 0. \]
3.1.1 Existencia de la transformada de Laplace

Existen funciones para el cual la integral impropia (3.1) no es convergente para algún valor de s. Por ejemplo, sea $f(t) = \frac{1}{t}$, el cual crece demasiado rápido para valores de t cerca de cero. Igualmente, no existe la transformada de Laplace de la función $f(t) = e^{it}$ el cual crece rápidamente cuando $t \to \infty$.

Diremos que la función f definida en $[a, b]$ tiene un salto de discontinuidad en $t_0 \in (a, b)$ si f es discontinua en t_0, pero los límites unilaterales

$$\lim_{t \to t_0^-} f(t) \quad \text{y} \quad \lim_{t \to t_0^+} f(t)$$

existen como números finitos.

Definición 3.3: Continuidad por tramos.

Una función f, se dice que es continua por tramos sobre un intervalo finito $[a, b]$ si f es continua en cada punto de $[a, b]$, excepto posiblemente para un número finito de puntos en la cual f tiene un salto de discontinuidad. Por otro lado, decimos que la función f es continua por tramos sobre $[0, +\infty]$ si f es continua por tramos sobre $[0, N]$ para todo $N > 0$.

Definición 3.4

Diremos que la función f es de orden exponencial α si existen constantes T y M tal que

$$|f(t)| \leq Me^{\alpha T}, \text{ para todo } t \geq T.$$

Usamos la frase “f es de orden exponencial”, si para algún valor de α, la función f satisface las condiciones de la definición anterior.

Ejemplo 3.9

1. La función $f(t) = e^{3t} \cos (6t)$ es de orden exponencial $\alpha = 3$, pues

$$|f(t)| = |e^{3t} \cos (6t)| \leq e^{3t},$$

con $M = 1$ y T cualquier constante positiva.

2. La función $f(t) = \cos (3t)$ es de orden exponencial $\alpha = 0$, con $M = 1$

$$|f(t)| = |\cos (3t)| \leq 1, \forall t \geq T.$$

Toda función acotada, es decir, $|f(t)| \leq M, \forall t \geq T$, es de orden exponencial.

3. La función $f(t) = e^{it}$ no es de orden exponencial. Para ver esto notar que

$$\lim_{t \to +\infty} \frac{e^{it}}{e^{at}} = \lim_{t \to +\infty} e^{t(t-a)} = +\infty,$$

para algún α. Por lo tanto, e^{it} crece más rápido que $e^{\alpha t}$ para cada selección de α.

El siguiente teorema muestra la condición suficiente para la existencia de la transformada de Laplace de una función.
Transformada de Laplace

Teorema 3.2: Condición suficiente

Si la función f es continua por tramos sobre $[0, +\infty]$ y de orden exponencial α, entonces existe su transformada de Laplace y es absolutamente convergente para todo $s > \alpha$.

Prueba.

Por la propiedad aditiva del intervalo de integrales definidas podemos escribir

$$\mathcal{L} \{f(t)\} = \int_0^\infty e^{-st} f(t) \, dt = \int_0^T e^{-st} f(t) \, dt + \int_T^\infty e^{-st} f(t) \, dt = I_1 + I_2.$$

Como $e^{-st} f(t)$ es continua entonces existe la integral de Riemann I_1. Además, como f es de orden exponencial α, existen constantes $M > 0$ y $T > 0$ tales que $|f(t)| \leq Me^{at}$ para todo $t > T$, entonces

$$|I_2| = \left| \int_T^\infty e^{-st} f(t) \, dt \right| \leq M \int_T^\infty e^{-(s-a)T} \, dt = M \frac{e^{-(s-a)T}}{s - \alpha}$$

para $s > \alpha$. Como $\int_T^\infty Me^{-at} \, dt$ converge, la integral $\int_T^\infty |e^{-st} f(t)| \, dt$ converge por la prueba de comparación para integrales impropias. La existencia de I_1 y I_2 implica que existe $\mathcal{L} \{f(t)\}$ para $s > \alpha$.

Ahora veamos el comportamiento de $\mathcal{L} \{f(t)\}$ cuando $s \to +\infty$.

Teorema 3.3

Si f es continua por tramos en $[0, \infty]$, de orden exponencial y $F(s) = \mathcal{L} \{f(t)\}$, entonces

$$\lim_{s \to +\infty} F(s) = 0.$$

Prueba.

Como f es de orden exponencial, existen constantes α_1, M_1 positivas y $T > 0$ tales que $|f(t)| \leq M_1 e^{\alpha_1 t}, \forall t > T$. Además, como f es continua por tramos en el intervalo $[0, T]$, está necesariamente acotada en el intervalo; es decir, $|f(t)| \leq M_2 = M_2 e^{0 T}$. Sea $M = \max \{M_1, M_2\}$ y $\alpha = \max \{0, \alpha_1\}$, entonces

$$|F(s)| = \left| \int_0^\infty e^{-st} f(t) \, dt \right| \leq \int_0^\infty e^{-st} |f(t)| \, dt \leq M \int_T^\infty e^{-(s-a)T} \, dt = \frac{M}{s - \alpha}$$

para $s > \alpha$. Si $s \to +\infty$, tenemos que $|F(s)| \to 0$ y por lo tanto $F(s) = \mathcal{L} \{f(t)\} \to 0$.

3.1.2 Propiedades de la transformada de Laplace

Muchas veces calcular la integral impropia, de la definición de la transformada de Laplace, es bastante tediosa. Por eso, para simplificar los cálculos presentaremos algunas propiedades importantes de la Transformada de Laplace.

Teorema 3.4: Propiedad de traslación

Si la transformada de Laplace $F(s)$ de $f(t)$ existe para $s > \alpha$, entonces para alguna constante a

$$\mathcal{L} \{e^{at} f(t)\} = F(s-a) \quad \text{para } s > \alpha + a. \quad (3.2)$$

Prueba.

Como $\mathcal{L} \{f(t)\} = \int_0^\infty e^{-st} f(t) \, dt$ reemplazando s por $s - a$, tenemos

$$F(s-a) = \int_0^\infty e^{-(s-a)t} f(t) \, dt = \int_0^\infty e^{-st} [e^{at} f(t)] \, dt = \mathcal{L} \{e^{at} f(t)\}.$$
Transformada de Laplace

Ejemplo 3.10

Calcule la transformada de Laplace de las siguientes funciones:

1. \(f(t) = te^t \).

 Solución.

 Como \(F(s) = \mathcal{L}\{t\} = \frac{1}{s^2} \) entonces de la propiedad de traslación tenemos

 \[
 \mathcal{L}\{e^t t\} = F(s - 1) = \frac{1}{(s-1)^2}.
 \]

2. \(f(t) = e^{at} \sin(bt) \).

 Solución.

 Como \(F(s) = \mathcal{L}\{\sin(bt)\} = \frac{b}{s^2 + b^2} \), entonces de la propiedad de traslación tenemos

 \[
 \mathcal{L}\{e^{at} \sin(bt)\} = F(s - a) = \frac{b}{(s-a)^2 + b^2}, \ s > a.
 \]

 En particular

 \[
 \mathcal{L}\{e^{-7t} \sin(3t)\} = F(s + 7) = \frac{3}{(s+7)^2 + 9}, \ s > -7.
 \]

3. \(f(t) = e^{at} \cos(bt) \)

 Solución.

 Como \(F(s) = \mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2} \), entonces de la propiedad de traslación obtenemos

 \[
 \mathcal{L}\{e^{at} \cos(bt)\} = F(s - a) = \frac{s - a}{(s-a)^2 + b^2}, \ s > a.
 \]

 En particular

 \[
 \mathcal{L}\{e^3 t \cos(4t)\} = F(s - 3) = \frac{s - 3}{(s-3)^2 + 16}, \ s > 3.
 \]

Como nuestro objetivo es resolver ecuaciones diferenciales usando la transformada de Laplace, enunciaremos el siguiente teorema que nos será de gran utilidad.
Transformada de Laplace

Teorema 3.5: Transformada de una derivada

Sea \(f \) continua sobre \([0, +\infty[\) y \(f' \) continua por tramos sobre \([0, +\infty[\), ambas de orden exponencial. Entonces para \(s > \alpha \),

\[
L \{ f' (t) \} = sL \{ f (t) \} - f (0).
\]

(3.3)

Prueba.

Por definición de transformada de Laplace

\[
L \{ f' (t) \} = \int_0^{+\infty} e^{-st} f' (t) \, dt = \lim_{h \to \infty} \int_0^h e^{-st} f' (t) \, dt.
\]

Como existe \(L \{ f' (t) \} \) podemos usar integración por partes, haciendo \(u = e^{-st} \), \(du = -se^{-st} \) y \(dv = f' (t) \, dt \), \(v = f (t) \) obtenemos

\[
\int_0^h e^{-st} f' (t) \, dt = e^{-st} f (t) \big|_0^h + s \int_0^h e^{-st} f (t) \, dt
\]

así,

\[
L \{ f' (t) \} = \lim_{h \to \infty} \int_0^h e^{-st} f' (t) \, dt = \lim_{h \to \infty} e^{-st} f (h) - f (0) + s \lim_{h \to \infty} \int_0^h e^{-st} f (t) \, dt
\]

\[
= sL \{ f (t) \} - f (0) + \lim_{h \to \infty} e^{-sh} f (h).
\]

Para evaluar \(\lim_{h \to \infty} e^{-sh} f (h) \) observemos que como \(f \) es de orden exponencial \(\alpha \), existe una constante \(M \) tal que para \(h \) grande,

\[
\left| e^{-sh} f (h) \right| \leq e^{-sh} Me^{-\alpha h} = Me^{-(s-\alpha)h}.
\]

Luego, para \(s > \alpha \),

\[
0 \leq \lim_{h \to \infty} \left| e^{-sh} f (h) \right| \leq \lim_{h \to \infty} Me^{-(s-\alpha)h} = 0,
\]

Por lo tanto, \(\lim_{h \to \infty} e^{-sh} f (h) = 0 \), para \(s > \alpha \). En consecuencia

\[
L \{ f' (t) \} = sL \{ f (t) \} - f (0).
\]

Asimismo, de manera general, tenemos el siguiente teorema.

Teorema 3.6

Si \(f', f'', \ldots, f^{(n)} \) son de orden exponencial \(\alpha \), entonces para \(s > \alpha \) tenemos:

\[
L \{ f^{(n)} (t) \} = s^n L \{ f (t) \} - s^{n-1} f (0) - s^{n-2} f' (0) - \cdots - f^{(n-1)} (0).
\]

(3.4)

Prueba.

Para \(n = 2 \), Utilizamos (3.3); reemplazando \(f \) por \(f' \), tenemos

\[
L \{ f'' (t) \} = sL \{ f' (t) \} - f' (0)
\]

\[
= s \left[sL \{ f (t) \} - f (0) \right] - f' (0)
\]

\[
= s^2 L \{ f (t) \} - sf (0) - f' (0).
\]

Para \(n = 3 \), utilizamos el mismo argumento anterior para conseguir

\[
L \{ f''' (t) \} = s^3 L \{ f (t) \} - s^2 f (0) - sf' (0) - f'' (0).
\]

Usando un argumento de inducción matemática sobre \(n \), se completa la prueba.
Ejemplo 3.11

Sabiendo que $\mathcal{L}\{\sin(at)\} = \frac{a}{s^2 + a^2}$, calcule $\mathcal{L}\{\cos(at)\}$.

Solución.

Sea $f(t) = \cos(at)$ entonces $f'(t) = -a\sin(at)$. Aplicando $\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0)$ con $f(t) = \sin(at)$

$\mathcal{L}\{-a\sin(at)\} = s\mathcal{L}\{\cos(at)\} - 1 \iff -a\left(\frac{s}{s^2 + a^2}\right) = s\mathcal{L}\{\cos(at)\} - 1$

$\iff \frac{a^2}{s^2 + a^2} = s\mathcal{L}\{\cos(at)\}$

$\iff \mathcal{L}\{\cos(at)\} = -\frac{s}{s^2 + a^2}$, si $s > 0$.

Ejemplo 3.12

Calcule la transformada de Laplace de $f(t) = t^n$, $n \in \mathbb{Z}$.

Solución.

Sea $y = f(t) = t^n$ entonces $y' = ny^{n-1}$, $f(0) = 0$. Usando (3.3) implica que $\mathcal{L}\{nt^{n-1}\} = s\mathcal{L}\{t^n\}$, de donde $\mathcal{L}\{t^n\} = \frac{n}{s}\mathcal{L}\{t^{n-1}\}$. Luego, para $s > 0$, tenemos que

Si $n = 1$, $\mathcal{L}\{t\} = \frac{1}{s}\mathcal{L}\{1\} = \frac{1}{s}$

Si $n = 2$, $\mathcal{L}\{t^2\} = \frac{2}{s}\mathcal{L}\{t\} = \frac{2}{s} \cdot \frac{1}{s} = \frac{2!}{s^2}$

Si $n = k$, $\mathcal{L}\{t^k\} = \frac{k}{s}\mathcal{L}\{t^{k-1}\} = \frac{k!}{s^{k+1}}.$

Por lo tanto, $F(s) = \mathcal{L}\{t^k\} = \frac{k!}{s^{k+1}}$.

Definición 3.5: Función Gamma

La función Gamma está dada por la integral impropia

$$\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} \, dt,$$ para $\alpha > 0$.

La función Gamma posee las siguientes propiedades:

1. $\Gamma(1) = 1$ y $\Gamma(1/2) = \sqrt{\pi}$.

2. Para $p > 0$, $\Gamma(p + 1) = p\Gamma(p)$, y si $n \in \mathbb{Z}^+$, $\Gamma(n+1) = n!$

3. $\int_0^{+\infty} e^{-t^2} \, dt = \frac{\sqrt{\pi}}{2}$.

4. Para $\alpha > -1$ entonces $\mathcal{L}\{t^\alpha\} = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}}$.

Veamos una pequeña prueba de la propiedad 4.
Sea \(u = st \) entonces \(du = s dt \), por lo que
\[
\mathcal{L} \{ t^a \} = \int_0^{+\infty} e^{-st} t^a dt = \int_0^{+\infty} e^{-u} \left(\frac{u}{s} \right)^a \frac{du}{s} = \frac{1}{s^{a+1}} \int_0^{+\infty} e^{-u} u^a du
\]
\[
= \frac{1}{s^{a+1}} \int_0^{+\infty} e^{-u} u^{(a+1)-1} du = \frac{1}{s^{a+1}} \Gamma (a+1).
\]

Ejemplo 3.13

Halle la transformada de \(f(t) = t^{-1/2} \).

Solución.
\[
\mathcal{L} \{ t^{-1/2} \} = \frac{\Gamma \left(-\frac{1}{2} + 1 \right)}{s^{-1/2+1}} = \frac{\Gamma \left(\frac{1}{2} \right)}{s^{1/2}} = \frac{\sqrt{\pi}}{s^{1/2}}, \quad s > 0.
\]

Teorema 3.7

Si \(f \) es de orden exponencial \(a \), entonces la transformada de Laplace de \(f(t) \), tiene derivadas en todos los ordenes, y
\[
\mathcal{L} \{ t^n f(t) \} = (-1)^n F^{(n)}(s) = (-1)^n \frac{d^n F}{dt^n}(s).
\]

Prueba.

Para \(n = 1 \), aplicando el teorema del cálculo para intercambiar el orden de la derivada con la integral se tiene que
\[
\frac{d}{ds} F(s) = \frac{d}{ds} \int_0^{+\infty} e^{-st} f(t) dt = \int_0^{+\infty} \frac{d}{ds} e^{-st} f(t) dt
\]
\[
= - \int_0^{+\infty} e^{-st} tf(t) dt = - \mathcal{L} \{ tf(t) \}.
\]

Para \(n = 2 \), usando el caso anterior tenemos
\[
\frac{d^2 F}{dt^2}(s) = \frac{d}{ds} \left(\frac{dF(s)}{ds} \right) = \frac{d}{ds} \left(- \mathcal{L} \{ tf(t) \} \right)
\]
\[
= - \frac{d}{ds} \int_0^{+\infty} e^{-st} tf(t) dt = - \int_0^{+\infty} e^{-st} (-t).f(t) dt
\]
\[
= \int_0^{+\infty} e^{-st} t^2 f(t) dt = \mathcal{L} \{ t^2 f(t) \}.
\]

El resultado general se sigue por inducción matemática sobre \(n \).

Ejemplo 3.14

Calcule \(\mathcal{L} \{ t \sin (5t) \} \).

Solución.
Ya conocemos que \(\mathcal{L} \{ t \sin (5t) \} = F(s) = \frac{5}{s^2 + 25} \). Derivando \(F(s) \) obtenemos \(F'(s) = \frac{-10s}{(s^2 + 25)^2} \). De aquí, usando la fórmula (3.5) con \(n = 1 \), obtenemos
\[
\mathcal{L} \{ t \sin (5t) \} = - \frac{dF}{ds}(s) = \frac{10s}{(s^2 + 25)^2}.
\]
Ejemplo 3.15

Calcule la transformada de Laplace de \(g(t) = t^3 e^{5t} \), aplicando

(a) \(L \{ e^{at} f(t) \} = F(s - a) \),

(b) \(L \{ t^n f(t) \} = (-1)^n \frac{d^n}{ds^n} F(s) \).

Solución.

(a) Sea \(f(t) = t^3 \), entonces
\[
F(s) = L \{ t^3 \} = \frac{3!}{s^{3+1}} = \frac{6}{s^4}.
\]
Luego,
\[
L \{ e^{5t} f(t) \} = F(s - 5) = \frac{6}{(s - 5)^4}.
\]

(b) Sea \(f(t) = e^{5t} \) entonces su transformada de Laplace es \(F(s) = \frac{1}{s - 5} \). Luego, derivando tenemos que
\[
F'(s) = -(s - 5)^{-2}, \quad F''(s) = 2(s - 5)^{-3} \quad \text{y} \quad F'''(s) = -6(s - 5)^{-4}
\]

Por lo tanto,
\[
L \{ t^3 f(t) \} = (-1)^3 \frac{d^3}{ds^3} F(s) = \frac{6}{(s - 5)^4}.
\]

Ejemplo 3.16

Calcule la transformada de Laplace de \(f(t) = te^{-t} \cos^2 t \).

Solución.

Como
\[
f(t) = te^{-t} \cos^2 t = te^{-t} \left(\frac{1 - \cos(2t)}{2} \right) = \frac{1}{2} [te^{-t} - te^{-t} \cos(2t)].
\]
Entonces
\[
F(s) = L \{ f(t) \} = \frac{1}{2} \left[L \{ te^{-t} \} - L \{ te^{-t} \cos(2t) \} \right].
\]

Pero \(L \{ te^{-t} \} = \frac{1!}{(s + 1)^{1+1}} = \frac{1}{(s + 1)^2} \), y \(L \{ te^{-t} \cos(2t) \} = G'(s) \), donde \(g(t) = e^{-t} \cos(2t) \) y
\[
G(s) = \frac{s + 1}{(s + 1)^2 + 4}.
\]

Luego,
\[
L \{ te^{-t} \cos(2t) \} = (-1) \frac{d}{ds} \left(\frac{s + 1}{(s + 1)^2 + 4} \right) = -\frac{4 - (s + 1)^2}{((s + 1)^2 + 4)^2}
\]
Finalmente, la transformada de Laplace de \(f \) es
\[
F(s) = \frac{1}{2} \left[\frac{1}{(s + 1)^2} + \frac{s^2 + 2s - 3}{(s^2 + 2s + 5)^2} \right].
\]
Ejemplo 3.17

Calcule $\mathcal{L}\{e^{5t} - 2t^3 + 5\sin(4t) - 3\cos(2t)\}$.

Solución.

Usando $\mathcal{L}\{e^{at}\} = \frac{1}{s-a}$, $\mathcal{L}\{t^k\} = \frac{k!}{s^{k+1}}$, $\mathcal{L}\{\sin(bt)\} = \frac{b}{s^2 + b^2}$ y $\mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2}$

\[
F(s) = \mathcal{L}\{e^{5t} - 2t^3 + 5\sin(4t) - 3\cos(2t)\}
= \mathcal{L}\{e^{5t}\} - 2\mathcal{L}\{t^3\} + 5\mathcal{L}\{\sin(4t)\} - 3\mathcal{L}\{\cos(2t)\}
= \frac{1}{s-5} - 2\frac{3!}{s^4} + 5\left(\frac{4}{s^2 + 16}\right) - 3\left(\frac{s}{s^2 + 4}\right)
= \frac{1}{s-5} - \frac{12}{s^4} + \frac{20}{s^2 + 16} - \frac{3s}{s^2 + 4}.
\]

Ejemplo 3.18

Calcule $\mathcal{L}\{e^{4t}\cos\left(\sqrt{3}t\right) + t^4e^{-5t}\}$.

Solución.

Usando $\mathcal{L}\{e^{at}\cos(bt)\} = \frac{s - a}{(s-a)^2 + b^2}$ y $\mathcal{L}\{e^{at}t^n\} = \frac{n!}{(s-a)^{n+1}}$ obtenemos

\[
F(s) = \mathcal{L}\{e^{4t}\cos\left(\sqrt{3}t\right) + t^4e^{-5t}\}
= \mathcal{L}\{e^{4t}\cos\left(\sqrt{3}t\right)\} + \mathcal{L}\{t^4e^{-5t}\}
= \frac{s - 4}{(s-4)^2 + 3} + \frac{4!}{(s+5)^5}.
\]

Teorema 3.8: Integral de la transformada

Supongamos que f es continua por tramos en $[0, +\infty)$, que es de orden exponencial α y existe
\[
\lim_{t \to 0^+} \frac{f(t)}{t},
\]
entonces

\[
\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_s^{+\infty} F(r) \, dr,
\]

(3.6)

donde $F(s) = \mathcal{L}\{f(t)\}$.

Prueba.

Por definición

\[
F(r) = \int_0^{+\infty} e^{-rt} f(t) \, dt
\]

integando desde s hasta $+\infty$, tenemos

\[
\int_s^{+\infty} F(r) \, dr = \int_s^{+\infty} \left(\int_0^{+\infty} e^{-rt} f(t) \, dt\right) dr.
\]

Bajo la hipótesis del teorema, podemos intercambiar el orden de integración

\[
\int_s^{+\infty} F(r) \, dr = \int_0^{+\infty} \left(\int_s^{+\infty} e^{-rt} f(t) \, dr\right) dt = \int_0^{+\infty} \left(\frac{e^{-rt}}{-r}\right)^{+\infty}_s f(t) \, dt
\]
\[
= \int_0^{+\infty} \left(0 - \frac{e^{-rt}}{-r}\right) f(t) \, dt = \int_0^{+\infty} e^{-st} \frac{f(t)}{t} \, dt
\]
\[
= \mathcal{L}\left\{\frac{f(t)}{t}\right\}.
\]
Ejemplo 3.19
Calcule \(\mathcal{L} \left\{ \frac{e^{3t} - 1}{t} \right\} \).

Solución.
Sea \(f(t) = e^{3t} - 1 \) entonces \(F(s) = \frac{1}{s-3} - \frac{1}{s} \). Luego, usando la indicación

\[
\mathcal{L} \left\{ \frac{f(t)}{t} \right\} = \int_{s}^{+\infty} F(r) \, dr = \int_{s}^{+\infty} \left(\frac{1}{r-3} - \frac{1}{r} \right) \, dr
\]

\[
= \lim_{b \to +\infty} \ln \left(\frac{r-3}{r} \right) \bigg|_{s}^{b} = \lim_{b \to +\infty} \left[\ln \left(\frac{b-3}{b} \right) - \ln \left(\frac{s-3}{s} \right) \right]
\]

\[
= 0 - \ln \left(\frac{s-3}{s} \right) = -\ln \left(\frac{s-3}{s} \right).
\]

Ejemplo 3.20
Calcule \(\mathcal{L} \left\{ \frac{\sen(5t)}{t} \right\} \).

Solución.
Sea \(f(t) = \sen(5t) \) entonces \(F(s) = \frac{5}{s^2 + 25} \). Luego

\[
\mathcal{L} \left\{ \frac{\sen(5t)}{t} \right\} = \int_{s}^{+\infty} F(r) \, dr = \int_{s}^{+\infty} \frac{5}{s^2 + 25} \, dr
\]

\[
= \lim_{b \to +\infty} \left[\arctan \left(\frac{b}{5} \right) - \arctan \left(\frac{s}{5} \right) \right]
\]

\[
= \frac{\pi}{2} - \arctan \left(\frac{s}{5} \right).
\]

3.2 Transformada inversa de Laplace

Definición 3.6
Si \(F(s) \) es la transformada de Laplace de la función \(f(t) \); es decir, \(\mathcal{L} \{ f(t) \} (s) = F(s) \), decimos que \(f(t) \) es la transformada inversa de Laplace de \(F(s) \) y la denotamos por

\(f(t) = \mathcal{L}^{-1} \{ F(s) \} \).

Teorema 3.9: Linealidad de la transformada inversa
Supongamos que existen \(\mathcal{L}^{-1} \{ F_1 \} \) y \(\mathcal{L}^{-1} \{ F_2 \} \) y son continuas en \([0, +\infty) \) y sea \(k \) cualquier constante real, entonces

1. \(\mathcal{L}^{-1} \{ F_1 + F_2 \} = \mathcal{L}^{-1} \{ F_1 \} + \mathcal{L}^{-1} \{ F_2 \} \),
2. \(\mathcal{L}^{-1} \{ kF_1 \} = k \mathcal{L}^{-1} \{ F_1 \} \).
Veamos en la siguiente tabla, algunas transformadas de Laplace con sus inversas

<table>
<thead>
<tr>
<th>Transformada inversa de Laplace (f(t) = \mathcal{L}^{-1}{F(s)})</th>
<th>Transformada de Laplace (F(s) = \mathcal{L}{f(t)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 = \mathcal{L}^{-1}\left{1 \over s\right}, \ s > 0)</td>
<td>(1 = {1 \over s}, \ s > 0)</td>
</tr>
<tr>
<td>(e^{at} = \mathcal{L}^{-1}\left{1 \over s-a\right}, \ s > a)</td>
<td>(e^{at} = {1 \over s-a}, \ s > a)</td>
</tr>
<tr>
<td>(t^n = \mathcal{L}^{-1}\left{n! \over s^{n+1}\right}, \ s > 0, \ n = 1,2,\ldots)</td>
<td>(t^n = n! \over s^{n+1}, \ s > 0)</td>
</tr>
<tr>
<td>(\sin (bt) = \mathcal{L}^{-1}\left{b \over s^2 + b^2\right}, \ s > 0)</td>
<td>(\sin (bt) = b \over s^2 + b^2, \ s > 0)</td>
</tr>
<tr>
<td>(\cos (bt) = \mathcal{L}^{-1}\left{s \over s^2 + b^2\right}, \ s > 0)</td>
<td>(\cos (bt) = s \over s^2 + b^2, \ s > 0)</td>
</tr>
<tr>
<td>(e^{at} \sin (bt) = \mathcal{L}^{-1}\left{b \over (s-a)^2 + b^2\right}, \ s > a, \ n = 1,2,\ldots)</td>
<td>(e^{at} \sin (bt) = b \over (s-a)^2 + b^2, \ s > a)</td>
</tr>
<tr>
<td>(e^{at} \cos (bt) = \mathcal{L}^{-1}\left{s-a \over (s-a)^2 + b^2\right})</td>
<td>(e^{at} \cos (bt) = s-a \over (s-a)^2 + b^2, \ s > a)</td>
</tr>
</tbody>
</table>

Ejemplo 3.21

Calcule \(\mathcal{L}^{-1}\left\{2 \over s^2 + 5\right\} \).

Solución.

Usando \(\sin (bt) = \mathcal{L}^{-1}\left\{b \over s^2 + b^2\right\} \), con \(b^2 = 5 \) obtenemos

\[
\mathcal{L}^{-1}\left\{2 \over s^2 + 5\right\} = 2 \mathcal{L}^{-1}\left\{\sqrt{5} \over s^2 + (\sqrt{5})^2\right\} = 2 \sqrt{5} \sin (\sqrt{5}t).
\]

Ejemplo 3.22

Calcule \(\mathcal{L}^{-1}\left\{6 \over s^3\right\} \).

Solución.

Aplicando \(t^n = \mathcal{L}^{-1}\left\{n! \over s^{n+1}\right\} \), con \(n = 2 \) se tiene

\[
\mathcal{L}^{-1}\left\{6 \over s^3\right\} = 3 \mathcal{L}^{-1}\left\{2! \over s^2+1\right\} = 3t^2.
\]

Ejemplo 3.23

Calcule \(\mathcal{L}^{-1}\left\{2s + 5 \over s^2 + 9\right\} \).

Solución.

De

\(\mathcal{L}\{\sin (bt)\} = b \over s^2 + b^2 \) y \(\mathcal{L}\{\cos (bt)\} = s \over s^2 + b^2 \),

\(\mathcal{L}\{\sin (bt) + 5\} = b \over s^2 + b^2 \) y \(\mathcal{L}\{\cos (bt)\} = s \over s^2 + b^2 \),

obtenemos

\[
\mathcal{L}^{-1}\left\{2s + 5 \over s^2 + 9\right\} = \mathcal{L}^{-1}\left\{2s \over s^2 + 9\right\} + \mathcal{L}^{-1}\left\{5 \over s^2 + 9\right\} = 2 \mathcal{L}^{-1}\left\{s \over s^2 + 9\right\} + 5 \mathcal{L}^{-1}\left\{1 \over s^2 + 9\right\} = 2 \cos (3t) + 5 \sin (3t).
\]
conseguimos

\[
\mathcal{L}^{-1}\left\{\frac{2s+5}{s^2+9}\right\} = \mathcal{L}^{-1}\left\{\frac{2s}{s^2+9}\right\} + \mathcal{L}^{-1}\left\{\frac{5}{s^2+9}\right\} \\
= 2\mathcal{L}^{-1}\left\{\frac{s}{s^2+9}\right\} + \frac{5}{3}\mathcal{L}^{-1}\left\{\frac{3}{s^2+9}\right\} \\
= 2\cos(3t) + \frac{5}{3}\sin(3t).
\]

Ejemplo 3.24

Calcule \(\mathcal{L}^{-1}\left\{\frac{2s-10}{s^2-4s+20}\right\}\).

Solución.

Usando \(\mathcal{L}\{e^{at}\sin(bt)\} = \frac{b}{(s-a)^2 + b^2}\) y \(\mathcal{L}\{e^{at}\cos(bt)\} = \frac{s-a}{(s-a)^2 + b^2}\) tenemos que

\[
\mathcal{L}^{-1}\left\{\frac{2s-10}{s^2-4s+20}\right\} = \mathcal{L}^{-1}\left\{\frac{2(s-2)-6}{(s-2)^2+16}\right\} \\
= 2\mathcal{L}^{-1}\left\{\frac{s-2}{(s-2)^2+16}\right\} - \frac{6}{4}\mathcal{L}^{-1}\left\{\frac{4}{(s-2)^2+16}\right\} \\
= 2e^{2t}\cos(4t) - \frac{3}{2}e^{2t}\sin(4t).
\]

Ejemplo 3.25

Calcule \(\mathcal{L}^{-1}\left\{\frac{3s^2-2s+20}{s^3+3s^2-10s}\right\}\).

Solución.

Como \(s^3+3s^2-10s = s(s^2+3s-10) = s(s-2)(s+5)\), y descomponiendo la fracción en suma de fracciones parciales

\[
\frac{3s^2-2s+20}{s^3+3s^2-10s} = A + \frac{B}{s-2} + \frac{C}{s+5} = \frac{(s-2)(s+5)A + s(s+5)B + s(s-2)C}{s(s-2)(s+5)}
\]

Si \(s = 0\) \(\Rightarrow\) \(B = -10A\), si \(s = 2\) \(\Rightarrow\) \(28 = 14B\) y si \(s = -5\) \(\Rightarrow\) \(105 = 35C\) de donde tenemos que \(A = -2, B = 2\) y \(C = 3\). Finalmente,

\[
\mathcal{L}^{-1}\left\{\frac{3s^2-2s+20}{s^3+3s^2-10s}\right\} = \mathcal{L}^{-1}\left\{-\frac{2}{s} + \frac{2}{s-2} + \frac{3}{s+5}\right\} \\
= -2\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} + 2\mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} + 3\mathcal{L}^{-1}\left\{\frac{1}{s+5}\right\} \\
= -2 + 2e^{2t} + 3e^{-5t}.
\]

Ejemplo 3.26

Calcule \(\mathcal{L}^{-1}\left\{\frac{s+4}{s^2+2s+3}\right\}\).

Solución.

Como \(s^2+2s+3 = (s+1)^2 + 2\), y usando las fórmulas

\[
e^{at}\sin(bt) = \mathcal{L}^{-1}\left\{\frac{b}{(s-a)^2 + b^2}\right\} \quad \text{y} \quad e^{at}\cos(bt) = \mathcal{L}^{-1}\left\{\frac{s-a}{(s-a)^2 + b^2}\right\}
\]
con \(a = -1 \) y \(b = \sqrt{2} \) obtenemos

\[
\mathcal{L}^{-1} \left\{ \frac{s + 4}{s^2 + 2s + 3} \right\} = \mathcal{L}^{-1} \left\{ \frac{(s + 1) + 3}{(s + 1)^2 + 2} \right\}
\]

\[
= \mathcal{L}^{-1} \left\{ \frac{s + 1}{(s + 1)^2 + 2} \right\} + \frac{3\sqrt{2}}{(s + 1)^2 + 2} \mathcal{L}^{-1} \left\{ \frac{\sqrt{2}}{(s + 1)^2 + 2} \right\}
\]

\[
= e^{-t} \cos(\sqrt{2}t) + \frac{3}{\sqrt{2}} e^{-t} \sin(\sqrt{2}t).
\]

Ejemplo 3.27

Calcule \(\mathcal{L}^{-1} \left\{ \frac{7}{(s + 3)^4} \right\} \).

Solución.

Usando \(e^{at} t^n = \mathcal{L}^{-1} \left\{ \frac{n!}{(s - a)^{n+1}} \right\} \) con \(n = 3 \) y \(a = -3 \) conseguimos que

\[
\mathcal{L}^{-1} \left\{ \frac{7}{(s + 3)^4} \right\} = \frac{7}{6} \mathcal{L}^{-1} \left\{ \frac{3!}{(s + 3)^3} \right\} = \frac{7}{6} e^{-3t} t^3.
\]

Ejemplo 3.28

Calcule \(\mathcal{L}^{-1} \left\{ \frac{2s - 4}{(s^2 + s)(s^2 + 1)} \right\} \).

Solución.

Descomponiendo la fracción en suma de fracciones parciales

\[
\frac{2s - 4}{s(s + 1)(s^2 + 1)} = \frac{A}{s} + \frac{B}{s + 1} + \frac{Cs + D}{s^2 + 1} = \frac{(s + 1)(s^2 + 1) A + s(s^2 + 1) B + s(s + 1)(Cs + D)}{s(s + 1)(s^2 + 1)}
\]

Si \(s = 0 \Rightarrow -4 = A \), si \(s = -1 \Rightarrow -6 = -2B \Rightarrow B = 3 \), si \(s = 1 \Rightarrow -2 = -10 + 2(C + D) \) y si \(s = -2 \Rightarrow -8 = -10 + 2(-2C + D) \) de donde obtenemos el sistema lineal

\[
\begin{align*}
C + D &= 4 \\
-2C + D &= 1
\end{align*}
\]

Por lo tanto

\[
\mathcal{L}^{-1} \left\{ \frac{2s - 4}{(s^2 + s)(s^2 + 1)} \right\} = \mathcal{L}^{-1} \left\{ \frac{3}{s + 1} + \frac{s + 3}{s^2 + 1} \right\} - \frac{4}{s}
\]

\[
= 3 \mathcal{L}^{-1} \left\{ \frac{1}{s + 1} \right\} - 4 \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} + \mathcal{L}^{-1} \left\{ \frac{s + 3}{s^2 + 1} \right\}
\]

\[
= 3 \mathcal{L}^{-1} \left\{ \frac{1}{s + 1} \right\} - 4 \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} + \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 1} \right\} + 3 \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 1} \right\}
\]

\[
= 3e^{-t} - 4 - \cos t + 3 \sin t.
\]
Ejemplo 3.29
Calcule $\mathcal{L}^{-1}\left\{\frac{3}{(s^2 + 1)(s^2 + 4)}\right\}$.

Solución.
Descomponiendo la fracción en suma de fracciones parciales

$$\frac{3}{(s^2 + 1)(s^2 + 4)} = \frac{As + B}{s^2 + 1} + \frac{Cs + D}{s^2 + 4} = \frac{(s^2 + 4) (As + B) + (s^2 + 1) (Cs + D)}{s^2 + 1} (s^2 + 4)$$

$$= \frac{(A + C) s^3 + (B + D) s^2 + (4 A + C) s + 4B + D}{(s^2 + 1)(s^2 + 4)}$$

de donde

$$3 = (A + C) s^3 + (B + D) s^2 + (4 A + C) s + 4B + D$$

por lo tanto se obtiene

\[
\begin{align*}
A + C &= 0 \\
B + D &= 0 \\
4A + C &= 0 \\
4B + D &= 3
\end{align*}
\]

Así

$$\mathcal{L}^{-1}\left\{\frac{3}{(s^2 + 1)(s^2 + 4)}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s^2 + 1} - \frac{1}{s^2 + 4}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s^2 + 1}\right\} - \frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^2 + 4}\right\} = \sin t - \frac{1}{2} \sin (2t).$$

Ejemplo 3.30
Calcule $\mathcal{L}^{-1}\left\{\ln\left(\frac{s - 2}{s + 1}\right)\right\}$.

Solución.
Sea $F(s) = \ln\left(\frac{s - 2}{s + 1}\right) = \ln(s - 2) - \ln(s + 1)$ la transformada de Laplace de $f(t)$, entonces

$$F'(s) = \frac{1}{s - 2} - \frac{1}{s + 1}.$$

Luego, aplicando transformada inversa de Laplace obtenemos

$$\mathcal{L}^{-1}\{F'(s)\} = \mathcal{L}^{-1}\left\{\frac{1}{s - 2} - \frac{1}{s + 1}\right\} = e^{2t} - e^{-t},$$

pero, usando la fórmula (3.5) con $n = 1$, se tiene

$$\mathcal{L}\{-tf(t)\} = F'(s) \leftrightarrow -tf(t) = \mathcal{L}^{-1}\{F'(s)\},$$

De donde $-tf(t) = e^{2t} - e^{-t}$, en consecuencia

$$f(t) = \frac{e^{-t} - e^{2t}}{t}.$$
Ejemplo 3.31

Calcule $\mathcal{L}^{-1}\left\{\ln\left(\frac{s^2 + 9}{s^2 + 1}\right)\right\}$.

Solución.

Sea $F(s) = \ln\left(\frac{s^2 + 9}{s^2 + 1}\right)$ la transformada de Laplace de $f(t)$, entonces

$$F'(s) = \frac{2s}{s^2 + 9} - \frac{2s}{s^2 + 1}.$$

Luego, aplicando transformada inversa de Laplace, obtenemos

$$\mathcal{L}^{-1}\{F'(s)\} = 2 \cos 3t - 2 \cos t,$$

Finalmente, como $-t f(t) = \mathcal{L}^{-1}\{F'(s)\}$, entonces

$$f(t) = \frac{2}{t}(\cos t - \cos 3t).$$

3.3 Solución de problemas de valor inicial

Nuestro objetivo es aplicar la transformada de Laplace para resolver PVI correspondientes a ecuaciones diferenciales lineales. Para ello, tenemos en cuenta los siguientes pasos:

i) Aplicar transformada de Laplace a ambos miembros de la EDO lineal.

ii) Aplicar propiedades de transformada de Laplace y las condiciones iniciales para obtener una ecuación de la transformada de Laplace y luego despejar dicha transformada.

iii) Aplicar la transformada inversa de Laplace para finalmente obtener la solución del PVI.

Este proceso se resume en el siguiente diagrama.
Ejemplo 3.32

Resolver el siguiente PVI
\[
\begin{aligned}
y' - y &= 1 - t \\
y(0) &= 3
\end{aligned}
\]

Solución.

Aplicando transformada de Laplace y propiedades, tenemos
\[
\mathcal{L} \{y' - y\} = \mathcal{L} \{1 - t\} \quad \Rightarrow \quad \mathcal{L} \{y'\} - \mathcal{L} \{y\} = \mathcal{L} \{(1 - t)\}
\]
\[
\Rightarrow (s\mathcal{L} \{y(t)\} - y(0)) - \mathcal{L} \{y\} = \frac{1}{s} - \frac{1}{s^2}
\]
\[
\Rightarrow (s - 1)\mathcal{L} \{y\} = \frac{1}{s} - \frac{1}{s^2} + 3 = \frac{s - 1 + 3s^2}{s^2}
\]
\[
\Rightarrow \mathcal{L} \{y\} = \frac{3s^2 + s - 1}{s^2(s - 1)}.
\]

Pero, descomponiendo la fracción en suma de fracciones parciales
\[
\frac{3s^2 + s - 1}{s^2(s - 1)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s - 1} = \frac{s(s - 1)A + (s - 1)B + s^2C}{s^2(s - 1)},
\]

si \(s = 0 \Rightarrow -1 = -B\), si \(s = 1 \Rightarrow 3 = C\) y si \(s = 2 \Rightarrow 13 = 2A + 1 + 12\), de donde \(A = 0\), \(B = 1\) y \(C = 3\).

Finalmente, aplicando transformada inversa de Laplace, obtenemos la solución del PVI
\[
y(t) = \mathcal{L}^{-1} \left\{ \frac{3s^2 + s - 1}{s^2(s - 1)} \right\} = \mathcal{L}^{-1} \left\{ \frac{3}{s - 1} + \frac{1}{s^2} \right\}
\]
\[
= 3\mathcal{L}^{-1} \left\{ \frac{3}{s - 1} \right\} + \mathcal{L}^{-1} \left\{ \frac{1}{s^2} \right\} = 3e^t + t.
\]

Ejemplo 3.33

Resolver el PVI
\[
\begin{aligned}
y'' - 4y' + 3y &= 0 \\
y(0) &= 3, \quad y'(0) = 5
\end{aligned}
\]

Solución.

Aplicando transformada de Laplace y propiedades, se obtiene
\[
\mathcal{L} \{y'' - 4y' + 3y\} = \mathcal{L} \{0\} \quad \Rightarrow \quad \mathcal{L} \{y''\} - 4\mathcal{L} \{y'\} + 3\mathcal{L} \{y\} = 0
\]
\[
\Rightarrow s^2\mathcal{L} \{y\} - sy(0) - y'(0) - 4(s\mathcal{L} \{y\} - y(0)) + 3\mathcal{L} \{y\} = 0
\]
\[
\Rightarrow s^2\mathcal{L} \{y(t)\} - 3s - 5 - 4(s\mathcal{L} \{y(t)\} - 3) + 3\mathcal{L} \{y\} = 0
\]
\[
\Rightarrow \mathcal{L} \{y(t)\} = \frac{3s - 7}{s^2 - 4s + 3}.
\]

Pero, descomponiendo la fracción en suma de fracciones parciales
\[
\frac{3s - 7}{s^2 - 4s + 3} = \frac{3s - 7}{(s - 3)(s - 1)} = \frac{A}{s - 1} + \frac{B}{s - 3} = \frac{A(s - 3) + B(s - 1)}{(s - 3)(s - 1)},
\]
si $s = 1 \Rightarrow -4 = -2A$, y si $s = 3 \Rightarrow 2 = 2B$, de donde $A = 2$ y $B = 1$.

Por lo tanto, aplicando transformada inversa de Laplace, obtenemos la solución del PVI

$$y(t) = \mathcal{L}^{-1} \left\{ \frac{2}{s - 1} + \frac{1}{s - 3} \right\} = \mathcal{L}^{-1} \left\{ \frac{2}{s - 1} \right\} + \mathcal{L}^{-1} \left\{ \frac{1}{s - 3} \right\}$$

$$= 2e^t + e^{3t}.$$

Ejemplo 3.34

Resolver el PVI

$$\begin{cases}
y'' - y' - 6y = 0 \\
y(0) = 1, \quad y'(0) = -1
\end{cases}$$

Solución.

Aplicando transformada de Laplace y propiedades

$$\mathcal{L} \{y'' - y' - 6y\} = \mathcal{L} \{0\} \quad \Leftrightarrow \quad \mathcal{L} \{y''\} - \mathcal{L} \{y'\} - 6\mathcal{L} \{y\} = 0$$

$$\Leftrightarrow \quad s^2\mathcal{L} \{y\} - sy(0) - y'(0) - s\mathcal{L} \{y\} + y(0) - 6\mathcal{L} \{y\} = 0$$

$$\Leftrightarrow \quad (s^2 - s - 6)\mathcal{L} \{y(t)\} - s + 1 = 0$$

$$\Leftrightarrow \quad \mathcal{L} \{y(t)\} = \frac{s - 2}{s^2 - s - 6} = \frac{\frac{s - 2}{s + 2}}{(s - 3)}.$$

Descomponiendo la fracción en suma de fracciones parciales

$$\frac{s - 2}{(s + 2)(s - 3)} = \frac{A}{s + 2} + \frac{B}{s - 3} = \frac{(s - 3)A + (s + 2)B}{(s + 2)(s - 3)}$$

si $s = -2 \Rightarrow -4 = -5A$, y si $s = 3 \Rightarrow 1 = 5B$, de donde $A = \frac{4}{5}$ y $B = \frac{1}{5}$.

Aplicando transformada inversa de Laplace, tenemos que la solución del PVI es

$$y(t) = \mathcal{L}^{-1} \left\{ \frac{4/5}{s + 2} + \frac{1/5}{s - 3} \right\} = \frac{4}{5} \mathcal{L}^{-1} \left\{ \frac{1}{s + 2} \right\} + \frac{1}{5} \mathcal{L}^{-1} \left\{ \frac{1}{s - 3} \right\} = \frac{4}{5} e^{-2t} + \frac{1}{5} e^{3t}.$$
Por lo que,

\[s^2 \mathcal{L} \{y\} - 0 - y'(0) + 4 \left[s \mathcal{L} \{y\} - 0 \right] + 5 \mathcal{L} \{y\} = \frac{2}{(s + 1)^2} \]

\[\Leftrightarrow s^2 \mathcal{L} \{y\} - 2 + 4s \mathcal{L} \{y\} + 5 \mathcal{L} \{y\} = \frac{2}{(s + 1)^2} \]

\[\Leftrightarrow (s^2 + 4s + 5) \mathcal{L} \{y\} = 2 + \frac{2}{(s + 1)^2} \]

\[\Leftrightarrow \mathcal{L} \{y\} = \frac{2(s^2 + 2s + 2)}{(s + 1)^2(s^2 + 4s + 5)} \]

Descomponiendo la fracción en suma de fracciones parciales

\[\frac{2(s^2 + 2s + 2)}{(s + 1)^2(s^2 + 4s + 5)} = \frac{A}{s + 1} + \frac{B}{(s + 1)^2} + \frac{C + D}{s^2 + 4s + 5} \]

\[= \frac{(B + C)s^3 + (A + 5B + 2C + D)s^2 + (2D + 4A + 9B + C)s + 5A + 5B + D}{(s + 1)^2(s^2 + 4s + 5)} \]

de donde obtenemos el sistema

\[
\begin{align*}
B + C &= 0 \\
A + 5B + 2C + D &= 2 \quad \Rightarrow A = 1, B = -1, C = 1, D = 4, \\
2D + 4A + 9B + C &= 4 \\
5A + 5B + D &= 4
\end{align*}
\]

Aplicando transformada inversa de Laplace obtenemos la solución

\[
\begin{align*}
y(t) &= \mathcal{L}^{-1} \left\{ \frac{1}{(s + 1)^2} - \frac{1}{s + 1} + \frac{s + 4}{s^2 + 4s + 5} \right\} \\
&= \mathcal{L}^{-1} \left\{ \frac{1}{(s + 1)^2} \right\} - \mathcal{L}^{-1} \left\{ \frac{1}{s + 1} \right\} + \mathcal{L}^{-1} \left\{ \frac{(s + 2) + 2}{(s + 2)^2 + 1} \right\} \\
&= \mathcal{L}^{-1} \left\{ \frac{1}{(s + 1)^2} \right\} - \mathcal{L}^{-1} \left\{ \frac{1}{s + 1} \right\} + \mathcal{L}^{-1} \left\{ \frac{s + 2}{(s + 2)^2 + 1} \right\} + \mathcal{L}^{-1} \left\{ \frac{2}{(s + 2)^2 + 1} \right\} \\
&= te^{-t} - e^{-t} + e^{-2t} \cos t + 2e^{-2t} \sin t \\
&= e^{-2t} (2 \cos t + \sin t) + e^{-t} (t - 1),
\end{align*}
\]

donde usamos:

\[e^{at} \sin (bt) = \mathcal{L}^{-1} \left\{ \frac{b}{(s - a)^2 + b^2} \right\} \quad \text{y} \quad e^{at} \cos (bt) = \mathcal{L}^{-1} \left\{ \frac{s - a}{(s - a)^2 + b^2} \right\} \]

Ejemplo 3.36

Resolver el PVI

\[
\begin{align*}
y'' - 6y' + 9y &= t^2 e^{3t} \\
y(0) &= 2, \quad y'(0) = 17
\end{align*}
\]

Solución.
Aplicando transformada de Laplace, a la ecuación diferencial obtenemos

\[\mathcal{L} \{y''\} - 6 \mathcal{L} \{y'\} + 9 \mathcal{L} \{y\} = \mathcal{L} \{t^2 e^{3t}\} \]

y usando propiedades

\[s^2 \mathcal{L} \{y(t)\} - sy(0) - y'(0) - 6 \left[s \mathcal{L} \{y(t)\} - y(0) \right] + 9 \mathcal{L} \{y(t)\} = \frac{2}{(s-3)^3} \]

de donde

\[(s^2 - 6s + 9) \mathcal{L} \{y(t)\} = 2s + 5 + \frac{2}{(s-3)^3} \]

despejando \(\mathcal{L} \{y(t)\}\) obtenemos

\[\mathcal{L} \{y(t)\} = \frac{2s + 5}{(s-3)^2} + \frac{2}{s-3} = \frac{2}{s-3} + \frac{11}{(s-3)^2} + \frac{2}{(s-3)^3} \]

Así, aplicando transformada inversa de Laplace, conseguimos la solución del PVI

\[y(t) = \mathcal{L}^{-1} \left\{ \frac{2}{s-3} \right\} + 11 \mathcal{L}^{-1} \left\{ \frac{1}{(s-3)^2} \right\} + \frac{2}{4!} \mathcal{L}^{-1} \left\{ \frac{4!}{(s-3)^4+1} \right\} \]

\[= 2e^{3t} + 11te^{3t} + \frac{1}{12} t^4 e^{3t}. \]

Ejemplo 3.37

Resolver el PVI

\[\begin{cases} y'' + y' - 2y = -4 \\ y(0) = 2, \quad y'(0) = 3 \end{cases} \]

Solución.

Aplicando transformada de Laplace y propiedades

\[\mathcal{L} \{y'' + y' - 2y\} = \mathcal{L} \{-4\} \quad \Leftrightarrow \quad \mathcal{L} \{y''\} + \mathcal{L} \{y'\} - 2\mathcal{L} \{y\} = -\frac{4}{s} \]

\[\Leftrightarrow \quad s^2 \mathcal{L} \{y\} - sy(0) - y'(0) + s \mathcal{L} \{y\} - y(0) - 2\mathcal{L} \{y\} = -\frac{4}{s} \]

\[\Leftrightarrow \quad (s^2 + s - 2) \mathcal{L} \{y\} - 2s - 3 - 2 = -\frac{4}{s} \]

\[\Leftrightarrow \quad (s - 1)(s + 2) \mathcal{L} \{y\} = 2s + 5 - \frac{4}{s} \]

\[\Leftrightarrow \quad \mathcal{L} \{y(t)\} = \frac{2s + 5}{(s - 1)(s + 2)} - \frac{4}{s(s - 1)(s + 2)} \]

Pero

\[\frac{2s + 5}{(s - 1)(s + 2)} = \frac{7}{3(s - 1)} - \frac{1}{3(s + 2)}, \quad \frac{-4}{s(s - 1)(s + 2)} = \frac{2}{s} - \frac{2}{3(s + 2)} - \frac{4}{3(s - 1)} \]

entonces

\[\mathcal{L} \{y(t)\} = \frac{2s + 5}{(s - 1)(s + 2)} - \frac{4}{s(s - 1)(s + 2)} = \frac{1}{s - 1} - \frac{1}{s + 2} + \frac{2}{s} \]

Aplicando transformada inversa de Laplace, obtenemos la solución del PVI

\[y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{s - 1} \right\} - \mathcal{L}^{-1} \left\{ \frac{1}{s + 2} \right\} + \mathcal{L}^{-1} \left\{ \frac{2}{s} \right\} \]

\[= e^t - e^{-2t} + 2. \]
Ejemplo 3.38

Resolver el PVI

\[
\begin{align*}
 y'' + 4y &= 3 \sin t \\
 y(0) &= 1, \quad y'(0) = -1
\end{align*}
\]

Solución.

Aplicando transformada de Laplace y usando propiedades, se tiene

\[
\mathcal{L} \{ y'' + 4y \} = \mathcal{L} \{ 3 \sin t \} \quad \Rightarrow \quad \mathcal{L} \{ y'' \} + 4 \mathcal{L} \{ y \} = \mathcal{L} \{ 3 \sin t \}
\]

\[
\Rightarrow s^2 \mathcal{L} \{ y(t) \} - sy(0) - y'(0) + 4 \mathcal{L} \{ y \} = \frac{3}{s^2 + 1}
\]

\[
\Rightarrow (s^2 + 4) \mathcal{L} \{ y(t) \} - s + 1 = \frac{3}{s^2 + 1}
\]

\[
\Rightarrow \mathcal{L} \{ y(t) \} = \frac{s - 1}{s^2 + 4} + \frac{3}{(s^2 + 1)(s^2 + 4)}
\]

Pero

\[
\frac{3}{(s^2 + 1)(s^2 + 4)} = \frac{1}{s^2 + 1} - \frac{1}{s^2 + 4}
\]

entonces

\[
\mathcal{L} \{ y(t) \} = \frac{s - 1}{s^2 + 4} + \frac{1}{s^2 + 1} - \frac{1}{s^2 + 4} = \frac{s}{s^2 + 4} + \frac{1}{s^2 + 1} - \frac{2}{s^2 + 4}
\]

Aplicando transformada inversa de Laplace, tenemos que la solución del PVI es

\[
y(t) = \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 4} \right\} + \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 1} \right\} - \mathcal{L}^{-1} \left\{ \frac{2}{s^2 + 4} \right\}
\]

\[
y(t) = e^t - e^{-2t} + 2.
\]

Ejemplo 3.39

Resolver el PVI

\[
\begin{align*}
 y'' - 3y' + 2y &= \cos t \\
 y(0) &= 0, \quad y'(0) = -1
\end{align*}
\]

Solución.

Aplicando transformada de Laplace y usando propiedades, se tiene

\[
\mathcal{L} \{ y'' - 3y' + 2y \} = \mathcal{L} \{ \cos t \} \quad \Rightarrow \quad \mathcal{L} \{ y'' \} - 3 \mathcal{L} \{ y' \} + 2 \mathcal{L} \{ y \} = \mathcal{L} \{ \cos t \}
\]

\[
\Rightarrow s^2 \mathcal{L} \{ y \} - sy(0) - y'(0) - 3s \mathcal{L} \{ y \} - 3y(0) + 2 \mathcal{L} \{ y \} = \frac{s}{s^2 + 1}
\]

\[
\Rightarrow s^2 \mathcal{L} \{ y \} + 1 - 3s \mathcal{L} \{ y \} + 2 \mathcal{L} \{ y \} = \frac{s}{s^2 + 1}
\]

\[
\Rightarrow (s^2 - 3s + 2) \mathcal{L} \{ y(t) \} = \frac{s}{s^2 + 1} - 1 = \frac{-s^2 + s - 1}{s^2 + 1}
\]

\[
\Rightarrow \mathcal{L} \{ y(t) \} = \frac{-s^2 + s - 1}{(s^2 - 3s + 2)(s^2 + 1)}
\]

Pero

\[
s^2 - 3s + 2 = (s - 1)(s - 2)
\]

y descomponiendo la fracción en suma de fracciones parciales,
tenemos

\[
\frac{-s^2 + s - 1}{(s^2 - 3s + 2)(s^2 + 1)} = \frac{A}{s-1} + \frac{B}{s-2} + \frac{Cs+D}{s^2 + 1}
\]

de donde \(A = 1/2, \ B = -3/5, \ C = 1/10 \) y \(D = -3/10 \).

Finalmente, Aplicando transformada inversa de Laplace, obtenemos la solución:

\[
y(t) = \frac{1}{2} \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} - \frac{3}{5} \mathcal{L}^{-1} \left\{ \frac{1}{s-2} \right\} + \frac{1}{10} \mathcal{L}^{-1} \left\{ \frac{s-3}{s^2 + 1} \right\}
\]

\[
= \frac{1}{2} e^t - \frac{3}{5} e^{2t} + \frac{1}{10} \cos t - \frac{3}{10} \sen t.
\]
3.4 Problemas propuestos

1. Determine la transformada de Laplace de

\(f(t) = \begin{cases}
2t + 1, & 0 \leq t < 1 \\
0, & t \geq 1
\end{cases} \)

1. Determine la transformada de Laplace de

\(f(t) = \begin{cases}
2, & 0 < t < 5 \\
0, & 5 < t < 10 \\
e^{4t}, & t > 10
\end{cases} \)

2. Calcule

\[L \left\{ 3 + t^4 - t^2 - t + \underbrace{\sqrt{2}t} \right\} \]

\[L \left\{ t^{1/2} - t^{3/2} - e^{-5t} + \cos (7t) \right\} \]

3. ¿Cuál de las siguientes funciones son de orden exponencial

a) \(t^3 \cos (3t) \)
b) \(100e^{49t} \)
c) \(t \ln t \)
d) \(1/(t^2 + 1) \)
e) \(\sin (2t^2) - t^4 e^{6t} \)

4. Calcule

\[L \left\{ (t - 2)^3 \right\} \]

\[L \left\{ (e^t + e^{-t})^2 \right\} \]

\[L \left\{ (t e^t + e^{-t})^2 \right\} \]

\[L \left\{ 2 + 3t + t^2 e^{-2t} \right\} \]

\[L \left\{ t^{10} e^{-7t} + \cos^2 t \right\} \]

\[L \left\{ \left[5 - e^t + 3e^{-4t} \right] \cos t \right\} \]

\[L \left\{ (9 - 4t + 10 \sin (t/2)) e^{3t} \right\} \]

\[L \left\{ 2t^{-1/2} + 3t^{3/2} \right\} \]

\[L \left\{ e^{-2t} \cos \left(\sqrt{3}t \right) + t^4 e^{-5t} \right\} \]

\[L \left\{ t^2 e^{-3t} \cos (4t) \right\} \]

5. Recordando que

\[\sinh (kt) = \frac{e^{kt} - e^{-kt}}{2} \quad \text{y} \quad \cosh (kt) = \frac{e^{kt} + e^{-kt}}{2}. \]

Calcule la transformada de Laplace de

a) \(f(t) = \sinh (2t) + \cosh (2t) \)
b) \(f(t) = e^{3t} \sinh (5t) - e^{3t} \cosh (2t) \)
c) \(f(t) = t^3 \sinh (3t) \)

6. Usando la fórmula (3.6), calcule \(L \left\{ f(t) \right\} \), si

(a) \(f(t) = \frac{e^t - e^{-t}}{t} \)
(b) \(f(t) = \frac{1 - \cos 2t}{t} \)

7. Calcule

\[L^{-1} \left\{ \frac{1}{s^2 + 3s} \right\} \]
Transformada de Laplace

124

b) \(\mathcal{L}^{-1}\left\{ \frac{s}{s^2 + 2s - 3} \right\} \)

c) \(\mathcal{L}^{-1}\left\{ \frac{s - 3}{s^2 - 3} \right\} \)

d) \(\mathcal{L}^{-1}\left\{ \frac{s^2 + 1}{s(s - 1)(s + 1)(s - 2)} \right\} \)

e) \(\mathcal{L}^{-1}\left\{ \frac{s}{s + 2} \left(s^2 + 4 \right) \right\} \)

f) \(\mathcal{L}^{-1}\left\{ \frac{6s + 3}{s^4 + 5s^2 + 4} \right\} \)

8. Aplicando la propiedad (3.5), calcule \(\mathcal{L}^{-1}\left\{ \ln \left(\frac{s - 3}{s + 1} \right) \right\} \).

9. Resolver los siguientes problemas de valores iniciales

a) \(\begin{cases} y'' - y' - 6y = 0 \\ y(0) = 1, \ y'(0) = -1 \end{cases} \)

b) \(\begin{cases} y'' - 2y' - 2y = 0 \\ y(0) = 2, \ y'(0) = 0 \end{cases} \)

c) \(\begin{cases} y'' - 3y' + 2y = e^{3t} \\ y(0) = 1, \ y'(0) = 0 \end{cases} \)

d) \(\begin{cases} y'' + y = 2e^t \\ y(0) = 2, \ y'(0) = 2 \end{cases} \)

e) \(\begin{cases} y'' - 2y' + 5y = -8e^{-t} \\ y(0) = 2, \ y'(0) = 12 \end{cases} \)

f) \(\begin{cases} y'' - 2y' + 2y = \cos t \\ y(0) = 1, \ y'(0) = 0 \end{cases} \)

g) \(\begin{cases} y'' - 3y' + 2y = \cos t \\ y(0) = 0, \ y'(0) = -1 \end{cases} \)

h) \(\begin{cases} y^{(4)} - 4y''' + 6y'' - 4y' + y = 0 \\ y(0) = 0, \ y'(0) = 1, \ y''(0) = 0, \ y'''(0) = 1 \end{cases} \)

i) \(\begin{cases} y''' + 2y'' - y' - 2y = \operatorname{sen}(3t) \\ y(0) = 0, \ y'(0) = 0, \ y''(0) = 1 \end{cases} \)
Sistemas de ecuaciones diferenciales lineales de primer orden

4.1 Sistemas de primer orden

En los capítulos anteriores hemos discutido métodos para resolver una ecuación diferencial ordinaria que involucra solo una variable dependiente. Muchas aplicaciones, sin embargo, requieren el uso de dos o más variables dependientes, cada una en función de una variable independiente única (típicamente tiempo). Tal problema conduce naturalmente a un sistema de ecuaciones diferenciales ordinarias simultáneas. Por lo general, denotaremos la variable independiente por t y las variables dependientes (las funciones desconocidas de t) por x_1, x_2, x_3, \cdots o por x, y, z, \cdots. Las primas indicarán derivadas con respecto a t.

Restringiremos nuestra atención a los sistemas en los que el número de ecuaciones es igual al número de variables dependientes (funciones desconocidas). Por ejemplo, un sistema de dos ecuaciones de primer orden en las variables dependientes x e y tiene la forma general

$$
\begin{align*}
 f(t, x, y, x', y') &= 0, \\
 g(t, x, y, x', y') &= 0,
\end{align*}
$$

(4.1)

donde las funciones f y g son dadas. Una solución de este sistema es un par $x(t), y(t)$ de funciones de t que satisfacen ambas ecuaciones de forma idéntica en algún intervalo de valores de t.

Considere un sistema de ecuaciones diferenciales que se puede resolver para derivadas de orden mayor de las variables dependientes que aparecen, como funciones explícitas de t y derivadas de orden inferior de las variables dependientes. Por ejemplo, en el caso de un sistema de dos ecuaciones de segundo orden, nuestro supuesto es que ella se puede escribir en la forma

$$
\begin{align*}
 x_1'' &= f_1(t, x_1, x_2, x_1', x_2'), \\
 x_2'' &= f_2(t, x_1, x_2, x_1', x_2').
\end{align*}
$$

(4.2)
Es de importancia tanto práctica como teórica que, cualquier sistema de orden superior se puede transformar en un sistema equivalente de ecuaciones de primer orden. Para describir cómo se logra tal transformación, consideramos primero el sistema que consta de una única ecuación de \(n \)-ésimo orden

\[
x^{(n)} = f (t, x, x', \ldots, x^{(n-1)}).
\]

Introducimos las variables dependientes \(x_1, x_2, \ldots, x_n \) definidas como sigue:

\[
x_1 = x, \ x_2 = x', \ x_3 = x'', \ldots, \ x_n = x^{(n-1)}.
\]

Notar que \(x'_1 = x' = x_2, \ x'_2 = x'' = x_3, \ldots \). Luego, la sustitución de (4.4) en la ecuación (4.3) nos da el sistema

\[
\begin{align*}
x'_1 &= x_2, \\
x'_2 &= x_3, \\
& \quad \vdots \\
x'_{n-1} &= x_n, \\
x'_n &= f (t, x_1, x_2, \ldots, x_n),
\end{align*}
\]

de \(n \) ecuaciones de primer orden. Evidentemente, este sistema es equivalente a la ecuación original de \(n \)-ésimo orden en (4.3), en el sentido de que \(x(t) \) es una solución de la ecuación (4.3) si y solo si las funciones \(x_1 (t), x_2 (t), \ldots, x_n (t) \) definido en (4.4) satisfacen el sistema de ecuaciones en (4.5).

En particular, veamos el caso de ecuaciones lineales de orden \(n \). La forma estándar de una ecuación diferencial lineal de \(n \)-ésimo orden es dada por

\[
\frac{d^n y}{dt^n} + a_{n-1} (t) \frac{d^{n-1} y}{dt^{n-1}} + \cdots + a_1 (t) \frac{dy}{dt} + a_0 (t) y = g (t)
\]

Si asumimos que las funciones \(a_{n-1}, \ldots, a_1, a_0 \) son funciones continuas con valores reales en algún intervalo \(I \), y si además, tenemos \(n \) condiciones iniciales

\[
y (t_0) = y_0, \ y' (t_0) = y_1, \ \ldots, \ y^{(n-1)} (t_0) = y_{n-1}.
\]

Entonces el PVI (4.6) - (4.7) tiene solución única.

Para transformar la ecuación (4.6) en un sistema de \(n \) ecuaciones de primer orden, introducimos las variables \(x_1, x_2, \ldots, x_n \) definidas por

\[
x_1 = y, \ x_2 = y', \ x_3 = y'', \ldots, \ x_n = y^{(n-1)}.
\]

Luego, del cambio de variables y de (4.6) se sigue inmediatamente que

\[
\begin{align*}
x'_1 &= x_2, \\
x'_2 &= x_3, \\
& \quad \vdots \\
x'_{n-1} &= x_n, \\
x'_n &= -a_{n-1} (t) x_n - \cdots - a_1 (t) x_2 - a_0 (t) x_1 + g (t).
\end{align*}
\]
Usando la notación matricial, el sistema anterior puede ser escrito como

\[X' = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_0(t) & -a_1(t) & -a_2(t) & -a_3(t) & \cdots & -a_{n-1}(t) \end{bmatrix} X + \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} \]

donde \(X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \) y \(X' = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} \).

Ejemplo 4.1

Transformar la ecuación diferencial de tercer orden: \(x''' + 2x'' - 3x' - 9x = \cos(7t) \) en un sistema de ecuaciones diferenciales de primer orden.

Solución.
La ecuación diferencial es de la forma (4.3) con \(x''' = f(t, x, x', x'') = \cos(7t) + 9x + 3x' - 2x'' \). Luego, hacemos las sustituciones

\[x_1 = x, \ x_2 = x' = x_1, \ x_3 = x'' = x_2', \]

de donde obtenemos el sistema requerido:

\[\begin{align*}
 x_1' &= x_2, \\
 x_2' &= x_3, \\
 x_3' &= \cos(7t) + 9x + 3x' - 2x''
\end{align*} \]

Ejemplo 4.2

Transformar la ecuación diferencial: \(x'' = x^2 + (x')^5 \) en un sistema de ecuaciones diferenciales de primer orden.

Solución.
Sea \(x_1' = x_2 \) entonces \(x_2' = x_1'' = x_1^2 + (x_2)^5 \). Por lo tanto, obtenemos el sistema de primer orden

\[\begin{align*}
 x_1' &= x_2, \\
 x_2' &= x_1^2 + x_2^5
\end{align*} \]
Ejemplo 4.3

Transformar el sistema de segundo orden

\begin{align*}
 x'' &= 3x - 5y \\
 y'' &= x - 2y - 43\cos(8t)
\end{align*}

en un sistema equivalente de ecuaciones diferenciales de primer orden.

Solución.

Motivado por las ecuaciones en (4.4), definimos las variables

\[x_1 = x, \quad x_2 = x' = x_1; \quad y_1 = y, \quad y_2 = y' = y_1. \]

Entonces, el sistema planteado se convierte en

\begin{align*}
 x_1' &= x_2 \\
 x_2' &= 3x_1 - 5y_1 \\
 y_1' &= y_2 \\
 y_2' &= x_1 - 2y_1 - 43\cos(8t)
\end{align*}

4.1.1 Sistema de dos ecuaciones simples

La ecuación diferencial lineal de segundo orden

\[x'' + ax' + bx = 0, \]

donde \(a, b \) son constantes reales y \(t \) la variable independiente. Haciendo \(x' = y \) y \(x'' = y' \) obtenemos el sistema lineal

\begin{align*}
 x' &= y \\
 y' &= -ax - by.
\end{align*}

Una solución \((x(t), y(t))\) de un sistema de dos ecuaciones

\begin{align*}
 x' &= f(t, x, y), \\
 y' &= f(t, x, y),
\end{align*}

(4.8)

puede considerarse como una parametrización de una curva solución o trayectoria del sistema en el plano \(xy \). La imagen que muestra las curvas de un sistema en el plano \(xy \), es el llamado retrato fase.

Para la resolución del sistema (4.8), presentamos un método que muchas veces resulta ser conveniente.
Método de eliminación

El método de eliminación para sistemas de ecuaciones diferenciales lineales es similar para la solución de un sistema de ecuaciones algebraicas, por un proceso de eliminando las incógnitas una a la vez hasta que solo quede una única ecuación con una sola incógnita, es más conveniente en el caso de sistemas pequeños: aquellos que no contienen más de dos o tres ecuaciones.

Ejemplo 4.4

Encontrar la solución particular del sistema

\[
\begin{align*}
\frac{dx}{dt} &= 4x - 3y \\
\frac{dy}{dt} &= 6x - 7y
\end{align*}
\]

que satisfacen las condiciones iniciales \(x(0) = 2\ y(0) = -1\).

Solución.

Despejando \(x\) en la segunda ecuación, conseguimos

\[x = \frac{1}{6}y' + \frac{7}{6}y,\]

entonces

\[x' = \frac{1}{6}y'' + \frac{7}{6}y'.\]

Luego, sustituyendo \(x\) y \(x'\) en la primera ecuación, se tiene

\[\frac{1}{6}y'' + \frac{7}{6}y' = 4\left(\frac{1}{6}y' + \frac{7}{6}y\right) - 3y,\]

simplificando, obtenemos la ecuación diferencial lineal de segundo orden

\[y'' + 3y' - 10y = 0,\]

cuya ecuación característica es

\[r^2 + 3r - 10 = (r - 2)(r + 5) = 0\]

Así, la solución general para \(y\), es \(y(t) = C_1 e^{-5t} + C_2 e^{2t}; \ y\)

\[x = \frac{1}{6}y' + \frac{7}{6}y = \frac{1}{6}(-5C_1 e^{-5t} + 2C_2 e^{2t}) + \frac{7}{6}\left(C_1 e^{-5t} + C_2 e^{2t}\right)
= \frac{1}{3}C_1 e^{-5t} + \frac{3}{2}C_2 e^{2t}.
\]

Aplicando las condiciones iniciales obtenemos el sistema

\[
\begin{align*}
C_1 + C_2 &= -1 \\
\frac{1}{3}C_1 + \frac{3}{2}C_2 &= 2
\end{align*}
\]

cuya solución es \(C_1 = -3, \ C_2 = 2\). Finalmente, la solución particular es

\[x(t) = -e^{-5t} + 3e^{2t}, \ y(t) = -3e^{-5t} + 2e^{2t}\]

Ejemplo 4.5
Resolver el PVI
\[
\begin{aligned}
x' &= -y \\
y' &= 1.01x - 0.2y \\
x(0) &= 0, \quad y(0) = -1
\end{aligned}
\]

Solución.
Transformamos el sistema en una ecuación diferencial de segundo orden:
\[
x'' = -y' = -1.01x + 0.2y = -1.01x - 0.2x' \\
de donde tenemos que
\]\[
x'' + 0.2x' + 1.01x = 0.
\]
Luego, la ecuación auxiliar asociada es
\[
r^2 + 0.2r + 1.01 = (r + 0.1)^2 + 1 = 0 \implies r = -0.1 \pm i.
\]
Luego,
\[
x(t) = e^{-0.1t} (C_1 \cos t + C_2 \sen t),
\]
pero \(x(0) = C_1 = 0\); así, \(x(t) = C_2 e^{-0.1t} \sen t\).
Además,
\[
y(t) = -x'(t) = \frac{1}{10} C_2 e^{-0.1t} \sen t - C_2 e^{-0.1t} \cos t = C_2 e^{-0.1t} \left(\frac{1}{10} \sen t - \cos t \right).
\]
y como \(y(0) = C_2 (0 - 1) = -1 \implies C_2 = 1\). Por lo tanto, la solución particular es
\[
x(t) = e^{-0.1t} \sen t, \quad y(t) = e^{-0.1t} \left(\frac{1}{10} \sen t - \cos t \right).
\]

4.2 Valores y vectores propios

4.2.1 Valores y vectores propios y diagonalización de una matriz

Sea \(A = (a_{ij})_{n \times n}\) una matriz. En muchas aplicaciones es útil encontrar un vector \(v\) tal que \(Av\) y \(v\) son paralelos, por eso damos la siguiente

Definición 4.1
El escalar \(\lambda \in \mathbb{F}\) (\(\mathbb{F}\) es \(\mathbb{R}\) o \(\mathbb{C}\)) es llamado un valor propio de \(A\) si existe un vector \(v \neq \theta\) tal que
\[
Av = \lambda v.
\]
El vector \(v \neq \theta\) se llama vector propio de \(A\) correspondiente al valor propio \(\lambda\).

Nota. Un valor propio \(\lambda\) se le suele llamar también autovalor o eigenvector, del mismo modo, a un vector propio se le llama también autovector o eigenvector.
Teorema 4.1

Sea \(A = (a_{ij})_{n\times n} \), entonces \(\lambda \in \mathbb{F} \) es un valor propio de \(A \) si y solo si

\[
p(\lambda) = \det(A - \lambda I_n) = 0, \tag{4.9}
\]

donde \(I_n \) es la matriz identidad de orden \(n \times n \).

Prueba.

Como \(\lambda \) es un valor propio de \(A \), entonces existe \(v \neq \theta \) tal que

\[
A(v) = \lambda v \iff A(v) - \lambda v = \theta v \iff A(v) - \lambda I_n v = \theta v \\
\iff (A - \lambda I_n)(v) = \theta v \iff \det(A - \lambda I_n) = 0. \tag{4.9}
\]

Ejemplo 4.6

Halle los valores propios de \(A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \).

Solución.

Aplicando (4.9), tenemos

\[
p(\lambda) = \det(A - \lambda I_n) = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & 3 - \lambda \end{vmatrix} = (\lambda - 2)^2 = 0.
\]

Por lo tanto, el valor propio de \(A \) es \(\lambda = 2 \).

Definición 4.2

La ecuación (4.9) se llama la ecuación característica de \(A \) y \(p(\lambda) \) se llama el polinomio característico de \(A \).

Definición 4.3

Sea \(\lambda \) un valor propio de \(A \). El conjunto

\[
S_\lambda = \{ v \in \mathbb{V} : Av = \lambda v \}
\]

se denomina subespacio propio de \(A \) correspondiente al valor propio \(\lambda \).

Procedimiento para calcular valores y vectores propios

i. Calculamos el polinomio característico de \(A \); es decir, \(p(\lambda) = \det(A - \lambda I_n) \)

ii. Se encuentran los valores propios: \(\lambda_1, \lambda_2, \cdots, \lambda_m \) de \(p(\lambda) = 0 \).

iii. Hallamos los vectores propios, para esto se resuelve el sistema homogéneo \((A - \lambda I_n) v = \theta \), correspondiente a cada valor propio \(\lambda_i \).
Ejemplo 4.7

Calcule los valores y vectores propios de \(A = \begin{pmatrix} -2 & -2 \\ -5 & 1 \end{pmatrix} \).

Solución.
Hallamos los valores propios de \(A \), que es
\[
\text{det}(A - \lambda I_2) = \text{det} \begin{pmatrix} -2 - \lambda & -2 \\ -5 & 1 - \lambda \end{pmatrix} = (-2 - \lambda)(1 - \lambda) - 10 = \lambda^2 + \lambda - 12
\]
\[
= (\lambda - 3)(\lambda + 4) = 0 \Rightarrow \lambda = -4, \lambda = 3.
\]
Enseguida, determinamos los vectores propios:
i) Para \(\lambda = -4 \), tenemos
\[
S_{\lambda=-4} = \{ v : A v = -4 v \} = \{ v : (A + 4 I_2) v = 0 \}
\]
\[
= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \begin{pmatrix} 2 & -2 \\ -5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\}
\]
\[
= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : 2x - 2y = 0, \quad -5x + 5y = 0 \right\}
\]
\[
= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : y = x \right\} = \left\{ \begin{pmatrix} x \\ x \end{pmatrix} : x \in \mathbb{R} \right\} = \text{gen} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}
\]
Así, un vector propio es \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

ii) Para \(\lambda = 3 \), tenemos
\[
S_{\lambda=3} = \{ v : A v = 3 v \} = \{ v : (A - 3 I_2) v = 0 \} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \begin{pmatrix} -5 & -2 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\}
\]
\[
= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : 2x - 2y = 0, \quad -5x + 5y = 0 \right\}
\]
\[
= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : y = \frac{5}{2} x \right\} = \left\{ \begin{pmatrix} 1 \\ 5/2 \end{pmatrix} x : x \in \mathbb{R} \right\}.
\]
Así, el vector propio es \(\begin{pmatrix} -2 \\ 5 \end{pmatrix} \).
Ejemplo 4.8

Halle los valores y vectores propios de la matriz \(A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \).

Solución.

El polinomio característico es

\[p(\lambda) = \lambda^3 - 5\lambda^2 + 8\lambda - 4 = (\lambda - 1)(\lambda - 2)^2. \]

Enseguida hallamos los correspondientes vectores propios:

i) Para \(\lambda_1 = 1 \), obtenemos

\[(A - \lambda_1 I) \mathbf{v} = 0 \iff \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]

\[\iff \begin{cases} 2x - y - z = 0 \\ x - z = 0 \Rightarrow z = y, \ y = x \\ x - y = 0 \end{cases} \]

de donde \(\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \). Escogemos \(\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) como el vector propio asociado a \(\lambda_1 = 1 \).

ii) Para \(\lambda_2 = 2 \), se sigue que

\[(A - \lambda_2 I) \mathbf{v} = 0 \iff \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]

\[\iff x - y - z = 0 \iff x = y + z \]

de donde

\[\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y + z \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}. \]
Se seleccionan \(\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) y \(\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \) como los vectores propios asociados a \(\lambda_2 = 2 \).

Teorema 4.2: Teorema de Cayley-Hamilton

Toda matriz es un cero de su polinomio característico.

Prueba.

Sea \(\mathbf{A} \) una matriz de orden \(n \times n \), cuyo polinomio característico es \(p(\lambda) \) entonces

\[
p(\mathbf{A}) = \det(\mathbf{A} - \lambda \mathbf{I}) = 0.\]

Ejemplo 4.9

Verificar el teorema de Cayley-Hamilton para la matriz \(\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix} \).

Solución.

El polinomio característico es:

\[
P(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 2 \\ -2 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(3 - \lambda) + 4 = \lambda^2 - 4\lambda + 7.
\]

tenemos que \(\mathbf{A} \) es un cero (o raíz) de \(P(\lambda) \), pues

\[
P(\mathbf{A}) = \mathbf{A}^2 - 4\mathbf{A} + 7\mathbf{I}.
\]

\[
\begin{align*}
&= \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix}^2 \\
&= \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix} - 4 \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix} + 7 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
&= \begin{pmatrix} -3 & 8 \\ -8 & 5 \end{pmatrix} + \begin{pmatrix} -4 & -8 \\ 8 & -12 \end{pmatrix} + 7 \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\end{align*}
\]

Observación: En algunos casos el teorema de Cayley-Hamilton es útil para calcular la inversa de una matriz. En efecto, dada la matriz \(\mathbf{A} \) de orden \(n \times n \) y su polinomio característico

\[
p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0,
\]

si existe \(\mathbf{A}^{-1} \) y \(p(\mathbf{A}) = 0 \), entonces por el teorema de Cayley-Hamilton

\[
p(\mathbf{A}) = \mathbf{A}^n + a_{n-1}\mathbf{A}^{n-1} + \cdots + a_1\mathbf{A} + a_0\mathbf{I} = 0.
\]

Luego, multiplicando la última expresión por \(\mathbf{A}^{-1} \), tenemos

\[
\mathbf{A}^{-1}p(\mathbf{A}) = \mathbf{A}^{n-1} + a_{n-1}\mathbf{A}^{n-2} + \cdots + a_2\mathbf{A} + a_1\mathbf{I} + a_0\mathbf{A}^{-1} = 0
\]
de donde conseguimos

$$A^{-1} = -\frac{1}{a_0} \left(A^{n-1} + a_{n-1} A^{n-2} + \cdots + a_2 A + a_1 I \right).$$

Ejemplo 4.10

Halle la inversa de la matriz

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix},$$

usando el teorema de Cayley-Hamilton.

Solución.

El polinomio característico es:

$$P(\lambda) = |A - \lambda I| = 1 - \lambda \begin{vmatrix} 2 & 1 \\ -1 & 2 - \lambda \end{vmatrix} = \lambda^3 - 5\lambda^2 + 8\lambda - 4$$

tomando $a_0 = -4$, $a_2 = -5$ y $a_1 = 8$ se tiene

$$A^{-1} = -\frac{1}{a_0} \left(A^2 + a_2 A + a_1 I \right)$$

$$= \frac{1}{4} \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix}^2 - 5 \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix} + 8 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \frac{1}{4} \begin{pmatrix} 2 & 0 & -2 \\ -1 & 4 & -1 \\ 2 & -4 & 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1/2 & 0 & -1/2 \\ -1/4 & 1 & -1/4 \\ 1/2 & -1 & 1/2 \end{pmatrix}.$$

4.2.2 Semejanza y diagonalización de matrices

Definición 4.4: Matrices semejantes

Se dice que dos matrices A y B del mismo orden $n \times n$ son **semejantes** si existe una matriz inversible C de orden $n \times n$ tal que

$$B = C^{-1}AC$$

Teorema 4.3

Si A y B son matrices semejantes de orden $n \times n$, entonces A y B tienen el mismo polinomio característico y, por lo tanto, tienen los mismos valores propios.
Prueba.
Como \(A \) y \(B \) son semejantes entonces \(B = C^{-1} AC \), además, usando \(I = C^{-1} C \), \(|AB| = |A||B| \) y

\[
\det (C^{-1}) = \det I = 1 \rightarrow \det (C^{-1}) \det (C) = 1 \implies \det (C^{-1}) = \frac{1}{\det (C)},
\]

obtenemos

\[
det (B - \lambda I) = det (C^{-1} AC - \lambda I) = det (C^{-1} AC - C^{-1} (\lambda I) C)
\]

\[
= det (C^{-1} (A - \lambda I) C) = det (C^{-1}) det (A - \lambda I) det (C)
\]

\[
= det (C^{-1}) det (C) det (A - \lambda I) = det (C^{-1} C) det (A - \lambda I)
\]

\[
= det (I) det (A - \lambda I).
\]

Esto significa que \(A \) y \(B \) tienen la misma ecuación característica, y como los valores propios son raíces de la ecuación característica, tenemos que tienen los mismos valores propios.

Definición 4.5

Una matriz \(A \) de orden \(n \times n \) es diagonalizable si existe una matriz diagonal \(D \) tal que \(A \) es semejante a \(D \); es decir,

\[D = C^{-1} AC. \]

Teorema 4.4

Sea \(A \) una matriz cuadrada de orden \(n \). Si se verifica que \(A \) tiene \(n \) valores propios \(\lambda_1, \lambda_2, \cdots, \lambda_n \) distintos dos a dos, entonces es diagonalizable. Además, existe una matriz \(C \) cuyas columnas son los vectores propios \(v_1, v_2, \cdots, v_n \) (linealmente independientes) asociados con los valores propios \(\lambda_1, \lambda_2, \cdots, \lambda_n \) de \(A \) para la que se cumple: \(A = CDC^{-1} \), equivalentemente \(D = C^{-1} AC \), donde la matriz diagonal \(D \) es semejante a \(A \) y

\[
D = \begin{pmatrix}
\lambda_1 & 0 & 0 & \cdots & 0 \\
0 & \lambda_2 & 0 & \cdots & 0 \\
0 & 0 & \lambda_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \lambda_n
\end{pmatrix}.
\]

La matriz diagonal con componentes \(\lambda_1, \lambda_2, \cdots, \lambda_n \) se denotará por \(D = \text{diag} (\lambda_1, \lambda_2, \cdots, \lambda_n) \).

Notas: Si \(k \) es un entero positivo, entonces

\[
D^k = \begin{pmatrix}
\lambda_1^k & 0 & 0 & \cdots & 0 \\
0 & \lambda_2^k & 0 & \cdots & 0 \\
0 & 0 & \lambda_3^k & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \lambda_n^k
\end{pmatrix}.
\]
En particular, si A es semejante a D entonces

$$A^k = (CDC^{-1})(CDC^{-1}) \cdots (CDC^{-1}) = CD^kC^{-1} = C$$

$$\begin{pmatrix} \lambda_1^k & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2^k & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \lambda_n^k \end{pmatrix}$$

Corolario 4.1

Si la matriz A de orden $n \times n$ tiene n valores propios diferentes, entonces A es diagonalizable.

Corolario 4.2

Si la matriz A de orden $n \times n$ es diagonalizable entonces A tiene n vectores propios linealmente independientes.

Ejemplo 4.11

Determine si la matriz A dada es diagonalizable, si lo es, encuentre una matriz C tal que $D = C^{-1}AC$.

a) $A = \begin{pmatrix} 3 & -1 \\ -2 & 4 \end{pmatrix}$

b) $A = \begin{pmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{pmatrix}$

Solución.

a) El polinomio característico es

$$p(\lambda) = |A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 \\ -2 & 4 - \lambda \end{vmatrix} = \lambda^2 - 7\lambda + 10 = (\lambda - 2)(\lambda - 5)$$

luego los valores propios son: $P(\lambda) = (\lambda - 2)(\lambda - 5) = 0 \Rightarrow \lambda = 2, \lambda = 5$.

Hallamos los vectores propios:

Para $\lambda = 2$, usamos $(A - 2I_2)v = 0$ de donde

$$(A - 2I_3)v = 0 \iff \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff y = x$$

entonces $v = \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \end{pmatrix}, x \in \mathbb{R}$. Escogemos $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
Para $\lambda = 5$, usamos $(A - 5I_3) v = 0$ de donde

$$(A - 5I_3) v = 0 \iff \begin{pmatrix} -2 & -1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff y = -2x$$

entonces $v = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $x \in \mathbb{R}$. Seleccionamos el vector propio correspondiente $v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Formamos la matriz $C = (v_1 v_2) = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$ tenemos que la inversa de C es $C^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & 3 \\ 1 & -1 \\ 3 & 3 \end{pmatrix}$, y finalmente

$$D = C^{-1} AC = \begin{pmatrix} 2 & 1 \\ 3 & 3 \\ 1 & -1 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}.$$

b) Del mismo modo, hallamos el polinomio característico

$$p(\lambda) = |A - \lambda I| = \begin{vmatrix} -3 - \lambda & -7 & -5 \\ 2 & 4 - \lambda & 3 \\ 1 & 2 & 2 - \lambda \end{vmatrix} = \lambda^3 - 3\lambda^2 + 3\lambda - 1 = (\lambda - 1)^3$$

y los valores propios son: $P(\lambda) = (\lambda - 1)^3 = 0 \Rightarrow \lambda = 1$ (de multiplicidad 3).

Hallamos el correspondiente vector propio

$$(A - I_3) v = 0 \iff \begin{pmatrix} -4 & -7 & -5 \\ 2 & 3 & 3 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} -4x - 7y - 5z = 0 \\ 2x + 3y + 3z = 0 \\ x + 2y + z = 0 \end{cases} \iff \begin{cases} x + 2y + z = 0 \\ y - z = 0 \\ y = z, x = -3z \end{cases}$$
Valores y vectores propios

Ejemplo 4.12

Determine si la matriz \(A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \) es diagonalizable, si lo es, encuentre una matriz \(C \) tal que \(D = C^{-1} AC \).

Solución.

El polinomio característico es

\[p(\lambda) = |A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & -2 \\ -1 & 2 - \lambda & 1 \\ 0 & 1 & -1 - \lambda \end{vmatrix} = \lambda^3 - 2\lambda^2 - \lambda + 2 = (\lambda - 1)(\lambda - 2)(\lambda + 1) \]

luego los valores propios de \(A \) son: \(\lambda = -1, \lambda = 1, \lambda = 2 \); cuyos vectores propios correspondientes son:

\[v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \text{ y } v_3 = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \]

Formamos la matriz \(C = (v_1 \ v_2 \ v_3) = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \) y \(C^{-1} = \begin{pmatrix} -\frac{1}{6} & -\frac{1}{3} & \frac{7}{6} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \); luego,

\[D = C^{-1} AC = \begin{pmatrix} -\frac{1}{6} & 1 & 1 \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{3} & 1 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \]

Por lo tanto, \(C = \begin{pmatrix} -3 \\ z \\ z \end{pmatrix}, z \in \mathbb{R} \). Así un vector propio es \(v = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \). Luego la matriz \(A \) de orden \(3 \times 3 \) no es diagonalizable ya que tiene un sólo vector propio y no podemos formar la matriz \(C \).

4. Sistemas de ecuaciones diferenciales lineales de primer orden
4.3 Sistemas de ecuaciones diferenciales lineales de primer orden

Un sistema de ecuaciones diferenciales lineales de primer orden es de la forma

\[
\begin{align*}
\frac{dx_1}{dt} &= a_{11}(t) x_1 + \cdots + a_{1n}(t) x_n + f_1(t) \\
\frac{dx_2}{dt} &= a_{21}(t) x_1 + \cdots + a_{2n}(t) x_n + f_2(t) \\
&\vdots \\
\frac{dx_n}{dt} &= a_{n1}(t) x_1 + \cdots + a_{nn}(t) x_n + f_n(t)
\end{align*}
\] (4.10)

donde \(x_i = x_i(t) \) y \(a_{ij}(t) \), \(i, j = 1, 2, \ldots, n \) son las variables y coeficientes respectivamente.

El sistema de EDO lineales (4.10) puede ser escrito en forma matricial como

\[
\begin{bmatrix}
x'_1(t) \\
x'_2(t) \\
\vdots \\
x'_n(t)
\end{bmatrix} =
\begin{bmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t) \\
\vdots \\
x_n(t)
\end{bmatrix} +
\begin{bmatrix}
f_1(t) \\
f_2(t) \\
\vdots \\
f_n(t)
\end{bmatrix}
\]

o brevemente como

\[
\frac{dX}{dt} = A(t) X + F(t)
\] (4.11)

donde

\[
X = X(t) =
\begin{bmatrix}
x_1(t) \\
x_2(t) \\
\vdots \\
x_n(t)
\end{bmatrix}, \quad
A =
\begin{bmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{bmatrix}, \quad
F(t) =
\begin{bmatrix}
f_1(t) \\
f_2(t) \\
\vdots \\
f_n(t)
\end{bmatrix}
\]

Llamamos a \(A \) la matriz de coeficientes de (4.11) y \(F \) la función de fuerza. Diremos que \(A \) y \(F \) son continuas si sus entradas son continuas. Si \(F(t) = 0 \) entonces diremos que el sistema

\[
X' = A(t) X
\] (4.12)

es homogéneo; en caso contrario es no homogéneo.
Definición 4.6

Un vector solución en un intervalo \(I \) es cualquier matriz columna

\[
X = \begin{bmatrix}
 x_1(t) \\
 x_2(t) \\
 \vdots \\
 x_n(t)
\end{bmatrix}
\]

y tiene la interpretación geométrica de un conjunto de ecuaciones paramétricas de una curva en el espacio \(n \) dimensional.

Definición 4.7

Diremos que el vector \(X = X(t) \) es solución de (4.11) en un intervalo \(I \) si sus elementos son funciones diferenciables que satisfacen (4.11) en dicho intervalo.

Un vector solución de la ecuación (4.11), equivale naturalmente, a \(n \) ecuaciones escalares

\[
x_1 = \varphi_1(t), \quad x_2 = \varphi_2(t), \ldots, x_n = \varphi_n(t)
\]

y tiene la interpretación geométrica de un conjunto de ecuaciones paramétricas de una curva en \(\mathbb{R}^n \). Por ejemplo, en el caso \(n = 2 \), las ecuaciones \(x_1 = \varphi_1(t), x_2 = \varphi_2(t) \) representan una curva en el plano \(x_1x_2 \). Llamaremos trayectoria a una curva en el plano y plano fase al plano \(x_1x_2 \).

Definición 4.8

Sean \(t_0 \in I \) y

\[
X(t_0) = \begin{bmatrix}
 x_1(t_0) \\
 x_2(t_0) \\
 \vdots \\
 x_n(t_0)
\end{bmatrix} = X_0.
\]

Se tiene que

\[
\begin{cases}
 X'(t) = AX + F \\
 X(t_0) = X_0
\end{cases}
\]

es denominado el problema de valor inicial en el intervalo \(I \).

Teorema 4.5

Si \(A(t) \) y \(F(t) \) son funciones continuas en el intervalo \(I = (a, b) \), entonces el problema de valor inicial (4.13) tiene una única solución, definida en todo el intervalo \(I \).
4.4 **Sistemas de ecuaciones diferenciales lineales homogéneas**

En esta sección consideramos sistemas lineales homogéneos \(X' = A(t)X \), donde \(A = A(t) \) es una función matricial de orden \(n \times n \), continua sobre \((a, b)\).

Definición 4.9

Si \(X_1, X_2, \ldots, X_n \) son funciones vectoriales definidas sobre el intervalo \((a, b)\) y \(c_1, c_2, \ldots, c_n \) son constantes, entonces \(X = c_1 X_1 + \cdots + c_n X_n \) es una combinación lineal de \(X_1, X_2, \ldots, X_n \).

Definición 4.10

Diremos que las funciones vectoriales \(X_1, X_2, \ldots, X_n \) definidas sobre el intervalo \((a, b)\) son linealmente independientes si al formar la combinación lineal nula

\[
c_1 X_1 + \cdots + c_n X_n = 0
\]

implica que todas las constantes \(c_i, i = 1, 2, \ldots, n \) son iguales a cero. Si existe por lo menos una constante \(c_i, i = 1, 2, \ldots, n \) diferente de cero, diremos que \(X_1, X_2, \ldots, X_n \) son linealmente dependientes.

Otra forma equivalente, diremos que el conjunto \(\{X_1, X_2, \ldots, X_n\} \) de \(n \) funciones vectoriales son linealmente independientes en \((a, b)\) si existen constantes \(c_1, c_2, \ldots, c_n \) tal que

\[
c_1 X_1 + \cdots + c_n X_n = 0, \quad a < t < b,
\]

entonces necesariamente \(c_1 = c_2 = \cdots = c_n = 0 \). Si de (4.14) existe por lo menos una constante \(c_i \neq 0 \), \(i = 1, 2, \ldots, n \), entonces diremos que \(X_1, X_2, \ldots, X_n \) es linealmente dependiente en \((a, b)\).

Teorema 4.6

Si \(\lambda \) es un valor propio de la matriz constante \(A \) con correspondiente vector propio \(v \), entonces

\[
X(t) = e^{\lambda t} v, \quad t \in \mathbb{R},
\]

es una solución del sistema homogéneo \(X' = AX \).

Prueba.

Sea \(X(t) = e^{\lambda t} v, \quad t \in \mathbb{R}, \) entonces

\[
X'(t) = \lambda e^{\lambda t} v = e^{\lambda t} \lambda v = e^{\lambda t} A v = Ae^{\lambda t} v = AX(t), \quad \text{para todo } t \in \mathbb{R}.
\]

Ejemplo 4.13

Halle las soluciones del sistema \(X' = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} X \).

Solución.

La matriz asociada al sistema tiene valores propios \(\lambda_1 = -2 \) y \(\lambda_2 = -1 \) con correspondientes vectores propios

\[
v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \text{y} \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
\]
Así, del teorema anterior, dos soluciones del sistema homogéneo son:

\[X_1(t) = e^{t_1 t} v_1 = e^{-2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \text{y} \quad X_2(t) = e^{t_2 t} v_2 = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \]

La siguiente definición ayuda a caracterizar al conjunto fundamental de soluciones de \(X' = A(t) X \).

Definición 4.11

El Wronskiano de las \(n \) funciones vectoriales

\[X_1 = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \\ \vdots \\ x_{n1}(t) \end{pmatrix}, \quad X_2 = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \\ \vdots \\ x_{n2}(t) \end{pmatrix}, \quad \ldots, \quad X_n = \begin{pmatrix} x_{1n}(t) \\ x_{2n}(t) \\ \vdots \\ x_{nn}(t) \end{pmatrix} \]

es definido por

\[W(X_1, X_2, \ldots, X_n) = \begin{vmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{vmatrix}. \]

Teorema 4.7: Criterio para las soluciones linealmente independientes

Sean \(X_1, X_2, \ldots, X_n; n \) vectores solución del sistema homogéneo (4.12), en el intervalo \(I \). Entonces el conjunto de vectores solución es linealmente independiente en \(I \) si y solo si \(W(X_1, X_2, \ldots, X_n) \neq 0 \).

Definición 4.12: Conjunto fundamental de soluciones

Diremos que el conjunto \(\{X_1, X_2, \ldots, X_n\} \) de \(n \) vectores solución, linealmente independientes del sistema homogéneo \(X' = A(t) X \) para cada \(t \in I \), es un **conjunto fundamental de soluciones** en el intervalo.

Teorema 4.8: Existeencia de un conjunto fundamental

Existe un conjunto fundamental \(\{X_1, X_2, \ldots, X_n\} \) de soluciones para el sistema homogéneo \(X' = AX \) en un intervalo \(I \).

Teorema 4.9: Principio de superposición

Sea \(\{X_1, X_2, \ldots, X_n\} \) un conjunto fundamental de soluciones del sistema homogéneo (4.12) en un intervalo \(I \). Entonces la **solución general** de \(X' = A(t) X \), \(t \in I \) es

\[X = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n, \quad (4.15) \]
donde \(c_1, c_2, \cdots, c_n \) son constantes arbitrarias. En este caso, diremos que (4.15) es la solución general de \(X' = A(t)X \) sobre \((a, b)\).

Prueba.

Como \(X'_1 = AX_1, \ X'_2 = AX_2, \cdots, \ X'_n = AX_n; \) entonces

\[
X' = c_1 X'_1 + c_2 X'_2 + \cdots + c_n X'_n = c_1 A X_1 + c_2 A X_2 + \cdots + c_n A X_n
\]

\[
= A(c_1 X_1 + c_2 X_2 + \cdots + c_n X_n) = AX.
\]

Teorema 4.10: Fórmula de Abel’s

Suponga que la matriz \(A = A(t) \) de orden \(n \times n \) es continua en \((a, b)\) y sea \(\{X_1, X_2, \cdots, X_n\} \) un conjunto fundamental de soluciones de \(X' = AX \) sobre \((a, b)\), y sea \(t_0 \in (a, b) \). Entonces el Wronskiano de \(\{X_1, X_2, \cdots, X_n\} \) es dado por

\[
W(t) = W(t_0) \exp\left(\int_{t_0}^{t} (a_{11}(s) + a_{22}(s) + \cdots + a_{nn}(s)) \, ds \right)
\]

\[
= W(t_0) \exp\left(\int_{t_0}^{t} \text{tr}(A(s)) \, ds \right), \quad a < t < b
\]

Teorema 4.11

Sea \(A(t) \) una matriz de orden \(n \times n \) de funciones continuas en el intervalo \(I \) y sea \(\{X_1, X_2, \cdots, X_n\} \) un conjunto fundamental de soluciones de \(X' = AX \) entonces la única solución del problema de valor inicial

\[
\begin{align*}
X' &= AX, \quad \text{con} \ t_0 \in I, \\
X(t_0) &= X_0
\end{align*}
\]

es

\[
X = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n,
\]

donde las constantes \(c_i, i = 1, 2, \cdots, n \) son determinadas.

4.5 Solución de sistemas lineales homogéneos con coeficientes constantes

Dado el sistema de \(n \) ecuaciones lineales homogéneas, con coeficientes constantes,

\[
X' = AX, \quad (4.16)
\]

donde \(A \) es la matriz asociada a dicho sistema con entradas constantes.

4.5.1 Método de los valores propios

Dentro de este método tenemos los siguientes casos:
1) Si A tiene valores propios reales y diferentes.

Teorema 4.12

Sean $\lambda_1, \lambda_2, \cdots, \lambda_n$, valores propios reales distintos con correspondientes vectores propios v_1, v_2, \cdots, v_n de la matriz A. Entonces las funciones

$$X_1 = v_1 e^{\lambda_1 t}, \quad X_2 = v_2 e^{\lambda_2 t}, \quad \cdots, \quad X_n = v_n e^{\lambda_n t}$$

forman un conjunto fundamental de soluciones de $X' = AX$; y por lo tanto, la solución general de este sistema es

$$X(t) = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t} + \cdots + c_n v_n e^{\lambda_n t} \quad (4.17)$$

Prueba.

Supongamos que $X(t)$ es como en (4.17). Demostremos que $X(t)$ satisface $X' = AX$. Derivando con respecto a t tenemos

$$X'(t) = c_1 v_1 \lambda_1 e^{\lambda_1 t} + c_2 v_2 \lambda_2 e^{\lambda_2 t} + \cdots + c_n v_n \lambda_n e^{\lambda_n t}$$

$$= c_1 e^{\lambda_1 t} (\lambda_1 v_1) + c_2 e^{\lambda_2 t} (\lambda_2 v_2) + \cdots + c_n e^{\lambda_n t} (\lambda_n v_n)$$

$$= c_1 e^{\lambda_1 t} (Av_1) + c_2 e^{\lambda_2 t} (Av_2) + \cdots + c_n e^{\lambda_n t} (Av_n)$$

$$= A \left(c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \cdots + c_n e^{\lambda_n t} v_n \right) = AX(t).$$

Esto completa la demostración.

El Wronskiano de (X_1, X_2, \cdots, X_n) es

$$W = \begin{vmatrix} x_{11} e^{\lambda_1 t} & x_{12} e^{\lambda_2 t} & \cdots & x_{1n} e^{\lambda_n t} \\ x_{21} e^{\lambda_1 t} & x_{22} e^{\lambda_2 t} & \cdots & x_{2n} e^{\lambda_n t} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} e^{\lambda_1 t} & x_{n2} e^{\lambda_2 t} & \cdots & x_{nn} e^{\lambda_n t} \end{vmatrix} = e^{\lambda_1 t} e^{\lambda_2 t} \cdots e^{\lambda_n t} \begin{vmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{vmatrix}.$$

Como las columnas del determinante del lado derecho son X_1, X_2, \cdots, X_n, el cual son linealmente independientes, el determinante es diferente de cero. Por lo tanto, del teorema anterior implica que (X_1, X_2, \cdots, X_n) es un conjunto fundamental de soluciones de $X' = AX$.

Ejemplo 4.14

Encuentre la solución general de

$$\begin{cases} \frac{dx}{dt} = x + 3y \\ \frac{dy}{dt} = 5x + 3y \end{cases}.$$

Solución.

El sistema equivale a $X' = AX$, donde $X = \begin{pmatrix} x \\ y \end{pmatrix}$ y $A = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix}$.

Los valores propios de A son

$$p(\lambda) = \lambda^2 - 4\lambda - 12 = 0 \Leftrightarrow \lambda_1 = -2, \lambda_2 = 6$$
y los correspondientes vectores propios son: \(v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \) y \(v_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \). así, las soluciones son

\[X(t) = v_1 e^{\lambda_1 t} + v_2 e^{\lambda_2 t} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{\lambda_1 t} + \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{\lambda_2 t} \]

Ejemplo 4.15

Halle la solución general de

\[
\begin{align*}
\frac{dx}{dt} &= x + 2y \\
\frac{dy}{dt} &= 2x + y
\end{align*}
\]

Solución.

La matriz asociada es \(A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \), cuyo polinomio característico es

\[p(\lambda) = |A - \lambda I| = (\lambda + 1)(\lambda - 3) \]

cuyos vectores propios correspondientes son: \(v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \) y \(v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Entonces la solución general del sistema es

\[X(t) = c_1 X_1 + c_2 X_2 = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t} = c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t} \]

de donde \(x(t) = -c_1 e^{-t} + c_2 e^{3t} \) y \(y(t) = c_1 e^{-t} + c_2 e^{3t} \).

Ejemplo 4.16

Resolver

\[
\begin{align*}
\frac{dx}{dt} &= 2x + 3y \\
\frac{dy}{dt} &= 2x + y
\end{align*}
\]

Solución.

La matriz asociada al sistema es \(A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \), cuyo polinomio característico es:

\[p(\lambda) = |A - \lambda I| = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4) \]
así, los valores propios de A son $\lambda_1 = -1$ y $\lambda_2 = 4$, los vectores propios correspondientes son:

$$v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$ y $$v_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$ Entonces, la solución general es

$$X = c_1 v_1 e^{-2t} + c_2 v_2 e^{4t} = c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t}.$$

Ejemplo 4.17

Una sustancia X se transforma en otra sustancia Y a un ritmo $k_1 > 0$, y Y a su vez se degrada en otra sustancia a un ritmo $k_2 > 0$. El sistema lineal, para $k_1 \neq k_2$,

$$\begin{cases} \frac{dx}{dt} = -k_1 x \\ \frac{dy}{dt} = k_1 x - k_2 y \end{cases}$$

describe el proceso, donde $x(t)$ y $y(t)$ representan la cantidad de X y Y, respectivamente.

(a) Halle los vectores propios de la matriz asociada al sistema.

(b) Resuelva el sistema y halle $\lim_{t \to +\infty} x(t)$ y $\lim_{t \to +\infty} y(t)$. Interprete su resultado.

Solución.

(a) La matriz asociada es $A = \begin{pmatrix} -k_1 & 0 \\ k_1 & -k_2 \end{pmatrix}$, cuyo polinomio característico es

$$p(\lambda) = |A - \lambda I| = \begin{vmatrix} -k_1 - \lambda & 0 \\ k_1 & -k_2 - \lambda \end{vmatrix} = (\lambda + k_1)(\lambda + k_2).$$

Así, los valores propios de A son $\lambda = -k_1, \lambda = -k_2$

(i) Si $\lambda = -k_1$, entonces

$$(A + k_1 I) v = 0 \iff \begin{pmatrix} 0 & 0 \\ k_1 & k_1 - k_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff k_1 x + (k_1 - k_2) y = 0$$

de donde $y = \frac{k_1}{k_1 - k_2} x$. Luego, $v = \begin{pmatrix} x \\ k_1 \end{pmatrix} = x \begin{pmatrix} 1 \\ k_1 \end{pmatrix}$. Entonces,$$
\iff v_1 = \begin{pmatrix} 1 \\ k_1 \end{pmatrix} \quad \text{o} \quad v_1 = \begin{pmatrix} k_1 \\ 1 \end{pmatrix}$$
(ii) Si $\lambda = -k_2$, entonces $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, pues

\[(A + k_2 I) v = 0 \leftrightarrow \begin{pmatrix} -k_1 + k_2 & 0 \\ k_1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow x = 0\]

Así, la solución es

\[X(t) = C_1 \begin{pmatrix} 1 \\ k_1 \\ k_1 - k_2 \end{pmatrix} e^{-k_1 t} + C_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-k_2 t}.\]

(b)

\[\lim_{t \to +\infty} x(t) = \lim_{t \to +\infty} C_1 e^{-k_1 t} = 0 \quad \text{y} \quad \lim_{t \to +\infty} y(t) \to +\infty C_1 k_1 e^{-k_1 t} + C_2 e^{-k_2 t} = 0.\]

Ejemplo 4.18

Encuentre la solución general de

\[
\begin{cases}
\frac{dx}{dt} = x + 2y + 2z \\
\frac{dy}{dt} = 2x + 7y + z \\
\frac{dz}{dt} = 2x + y + 7z
\end{cases}
\]

Solución.

La matriz asociada al sistema es $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 7 & 1 \\ 2 & 1 & 7 \end{pmatrix}$, cuyo polinomio característico es

\[p(\lambda) = |A - \lambda I| = \lambda^3 - 15\lambda^2 + 54\lambda = \lambda (\lambda - 6) (\lambda - 9)\]

de donde obtenemos que los correspondientes vectores propios son:

para $\lambda_1 = 0$, $v_1 = \begin{pmatrix} -4 \\ 1 \\ 1 \end{pmatrix}$, para $\lambda_2 = 6$, $v_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ y para $\lambda_3 = 9$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

Solución de sistemas lineales homogéneos con coeficientes constantes

Luego, \(X(t) = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \), la solución es

\[
X(t) = c_1 X_1 + c_2 X_2 + c_3 X_3 = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t} + c_3 v_3 e^{\lambda_3 t}
\]

es decir, \(x(t) = -4c_1 + c_3 e^{9t} \), \(y(t) = c_1 - 2c_2 e^{6t} + 2c_3 e^{9t} \) y \(z(t) = c_1 + c_2 e^{6t} + 2c_3 e^{9t} \).

Ejemplo 4.19

Resolver \(X' = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} X \).

Solución.

El polinomio característico es: \(p(\lambda) = \lambda^3 - 3\lambda^2 - 9\lambda - 5 = (\lambda + 1)^2 (\lambda - 5) \).

Los vectores propios correspondientes para \(\lambda_1 = -1 \) son: \(v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \), \(v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \) y para \(\lambda_2 = 5 \)

es \(v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \). Así, las soluciones linealmente independientes son de la forma

\[
X_i = v_i e^{\lambda_i t}, \quad i = 1, 2, 3
\]

y la solución general es

\[
X = c_1 X_1 + c_2 X_2 + c_3 X_3 = c_1 v_1 e^{-t} + c_2 v_2 e^{-t} + c_3 v_3 e^{5t}
\]

\[
= c_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} e^{5t}.
\]
2) Valores propios repetidos.

Empezamos con el caso de la matriz
\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \]
con polinomio característico
\[p(\lambda) = (\lambda - \lambda_1)^2, \]
si existe un único vector propio correspondiente \(v_1 \). Entonces teníamos una única solución
\[X_1(t) = v_1 e^{\lambda_1 t}, \]
donde
\[\mathbf{X}' = A \mathbf{X} \]
determinamos una segunda solución de la forma
\[X_2(t) = v_2 t e^{\lambda_1 t}, \]
de donde
\[v_2 e^{\lambda_1 t} + v_2 t e^{\lambda_1 t} = A \left(v_2 t e^{\lambda_1 t} \right) \]
Si equilibramos los coeficientes de \(e^{\lambda_1 t} \) y \(t e^{\lambda_1 t} \) conseguimos que \(v_2 = 0 \).
Así, buscamos una segunda solución de la forma
\[X_2(t) = (v_1 t + v_2) e^{\lambda_1 t}, \]
donde \(v_1, v_2 \) son vectores constantes no nulos.

Cuando sustituimos \(X_2(t) \) en la ecuación
\[\mathbf{X}' = A \mathbf{X}, \]
conseguimos
\[X_2' = v_1 e^{\lambda_1 t} + (v_1 t + v_2) \lambda_1 e^{\lambda_1 t} = A X_2 = A (v_1 t + v_2) e^{\lambda_1 t} \]
lo que equivale a
\[v_1 e^{\lambda_1 t} + \lambda_1 v_1 t e^{\lambda_1 t} + \lambda_1 v_2 e^{\lambda_1 t} - Av_1 t e^{\lambda_1 t} - Av_2 e^{\lambda_1 t} = 0 \]
de donde obtenemos \((A - \lambda_1 I) v_1 = 0 \) y \((A - \lambda_1 I) v_2 = v_1 \); el vector propio \(v_2 \) es denominado el vector propio generalizado de \(A \).

Por lo tanto, dos soluciones linealmente independientes de \(\mathbf{X}' = A \mathbf{X} \) son
\[X_1(t) = v_1 e^{\lambda_1 t}, \]
\[X_2(t) = (v_1 t + v_2) e^{\lambda_1 t}, \]
y la solución general es
\[X(t) = C_1 X_1(t) + C_2 X_2(t) = C_1 v_1 e^{\lambda_1 t} + C_2 (v_1 t + v_2) e^{\lambda_1 t}. \]

Ejemplo 4.20

Resolver
\[\mathbf{X}' = \begin{pmatrix} 1 & -3 \\ 3 & 7 \end{pmatrix} \mathbf{X}. \]

Solución.

El polinomio característico es:
\[p(\lambda) = \begin{vmatrix} 1 - \lambda & -3 \\ 3 & 7 - \lambda \end{vmatrix} = 7 - \lambda + \lambda^2 - 7\lambda + 9 = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^2 = 0 \]
de donde obtenemos el único valor propio \(\lambda = 4 \).
Hallamos el correspondiente vector propio: \((A - 4I) v = 0 \)

\[
\begin{pmatrix} -3 & -3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

\[\Rightarrow x + y = 0 \Rightarrow x = -y \]

luego
\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}. \]

Escogemos \(v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \).
Solución de sistemas lineales homogéneos con coeficientes constantes

Hallamos el vector propio generalizado \((A - \lambda I) v_2 = v_1\)

\[
\begin{pmatrix}
-3 & -3 \\
3 & 3
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
= \begin{pmatrix}
-1 \\
1
\end{pmatrix}
\iff 3x + 3y = 1 \iff x = \frac{1}{3} - y
\]

por lo tanto

\[
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
\frac{1}{3} - y \\
y
\end{pmatrix} + y \begin{pmatrix}
-1 \\
1
\end{pmatrix}
\]

Se selecciona \(v_2 = \begin{pmatrix}
1/3 \\
0
\end{pmatrix}\).

Finalmente, la solución general es

\[
X(t) = C_1 v_1 e^{\lambda_1 t} + C_2 (v_1 t + v_2) e^{\lambda_2 t}
\]

\[
= C_1 \begin{pmatrix}
-1 \\
1
\end{pmatrix} e^{\lambda_1 t} + C_2 \begin{pmatrix}
-1 \\
1
\end{pmatrix} t + \begin{pmatrix}
1/3 \\
0
\end{pmatrix} e^{\lambda_2 t}.
\]

Ejemplo 4.21

Resolver \(X' = \begin{pmatrix}
3 & -18 \\
2 & -9
\end{pmatrix} X\).

Solución.

El polinomio característico es: \(p(\lambda) = \lambda^2 + 6\lambda + 9 = (\lambda + 3)^2\)

El vector propio asociado a \(\lambda = \lambda_1 = -3\) es \(v_1 = \begin{pmatrix}
3 \\
1
\end{pmatrix}\) y el vector propio generalizado es \((x = 3y + 1/2) v_2 = \begin{pmatrix}
1/2 \\
0
\end{pmatrix}\). Luego la solución es \(X_1 = v_1 e^{\lambda_1 t}, X_2 = v_1 t e^{\lambda_1 t} + v_2 e^{\lambda_2 t}\) y la solución general es

\[
X = c_1 X_1 + c_2 X_2 = c_1 v_1 e^{\lambda_1 t} + c_2 \left(v_1 t e^{\lambda_1 t} + v_2 e^{\lambda_2 t} \right).
\]

Ejemplo 4.22

Considere el modelo depredador - presa gobernado por el sistema

\[
\begin{align*}
x_1'(t) &= 2x_1(t) - x_2(t) \\
x_2'(t) &= x_1(t) + 4x_2(t)
\end{align*}
\]

donde \(x_1(t)\) es la presa y \(x_2(t)\) es el depredador. Si las poblaciones iniciales son \(x_1(0) = 500, x_2(0) = 100\). Calcule las poblaciones de las dos especies para cualquier instante \(t > 0\).

Solución.

La matriz asociada es \(\begin{pmatrix}
2 & -1 \\
1 & 4
\end{pmatrix}\), cuyo polinomio característico es:

\[
p(\lambda) = |A - \lambda I| = \lambda^2 - 6\lambda + 9 = (\lambda - 3)^2
\]
de donde tenemos que el valor propio es \(\lambda = -3 \). El vector propio correspondiente es:

\[
(A - 3I) X = 0 \Rightarrow \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x_1 + x_2 = 0,
\]

así un vector propio es \(v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \). Hallamos el vector propio generalizado

\[
(A - 3I) v_2 = v_1 \leftrightarrow \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

entonces \(x_1 + x_2 = -1 \rightarrow x_2 = -1 - x_1 \), por lo que

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -1 - x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}
\]

escogemos \(v_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \). La solución general es

\[
X = c_1 X_1 + c_2 X_2 = c_1 v_1 e^{\lambda_1 t} + c_2 \left(v_1 t e^{\lambda_1 t} + v_2 e^{\lambda_1 t} \right)
\]

\[
= c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} te^{3t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{3t}.
\]

En general, si para \(A = \left(a_{ij} \right)_{n \times n} \) existe un único vector propio \(v_1 \) que corresponde al valor propio \(\lambda = \lambda_1 \), (de multiplicidad \(k \)), entonces existen \(k \) soluciones linealmente independientes de la forma

\[
X_1 (t) = v_1 e^{\lambda_1 t}
\]

\[
X_2 (t) = (v_1 t + v_2) e^{\lambda_1 t}
\]

\[
X_3 (t) = \left(\frac{1}{2} v_1 t^2 + v_2 t + v_3 \right) e^{\lambda_1 t}
\]

\[
\vdots
\]

\[
X_k (t) = \left(v_1 \frac{t^{k-1}}{(k-1)!} + \cdots + v_k \frac{t^2}{2!} + v_{k-1} t + v_k \right) e^{\lambda_1 t}
\]
3) Valores propios complejos

Comenzamos con el siguiente ejemplo.

Ejemplo 4.23

Resolver \(X' = \begin{pmatrix} 4 & -3 \\ 3 & 4 \end{pmatrix} X\).

Solución.

El polinomio característico es:

\[p(\lambda) = |A - \lambda I| = \begin{vmatrix} 4 - \lambda & -3 \\ 3 & 4 - \lambda \end{vmatrix} = (4 - \lambda)^2 + 9 = 0 \Rightarrow \lambda = 4 \pm 3i. \]

Para \(\lambda = 4 - 3i\), hallamos el correspondiente vector propio: \((A - \lambda I) v = 0\)

\[
\begin{pmatrix} 3i & -3 \\ 3 & 3i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} 3ix - 3y = 0 \\ 3x + 3iy = 0 \end{cases} \Rightarrow y = ix
\]

Luego, \(v = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ ix \end{pmatrix} = x \begin{pmatrix} 1 \\ i \end{pmatrix}\), escogemos \(v_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}\).

\[X(t) = e^{\lambda t}v_1 = e^{(4-3i)t} \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{4t}e^{-3it} \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{4t}(\cos(-3t) + i\sen(-3t)) \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{4t}(\cos3t - i\sen3t) \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{4t}(\cos3t - i\sen3t) \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{4t}(\cos3t - i\sen3t) \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{4t}(\cos3t + i\sen3t) \begin{pmatrix} 1 \\ i \end{pmatrix}.
\]

La parte real e imaginaria de \(X(t)\) son las soluciones con valores reales del sistema, es decir,

\[X_1(t) = e^{4t} \begin{pmatrix} \cos3t \\ \sen3t \end{pmatrix} \quad X_2(t) = e^{4t} \begin{pmatrix} -\sen3t \\ \cos3t \end{pmatrix} \]

Finalmente, la solución general (real) es

\[X(t) = C_1 X_1(t) + C_2 X_2(t) = C_1 e^{4t} \begin{pmatrix} \cos3t \\ \sen3t \end{pmatrix} + C_2 e^{4t} \begin{pmatrix} -\sen3t \\ \cos3t \end{pmatrix}. \]

Consideremos el sistema lineal homogéneo \(X' = AX\), donde ahora se supone que todas las entradas de la matriz \(A\) son números reales, por lo que los coeficientes en la ecuación característica \(p(\lambda) = 0\) serán todos números reales y cualquier valor propio complejo de \(A\) debe ocurrir en pares conjugados.
En consecuencia, cualesquiera valores propios complejos se presentarán en pares conjugados complejos. Supongamos entonces que \(\lambda = \alpha + \beta i \) y \(\bar{\lambda} = \alpha - \beta i \) son un par de valores propios de \(A \) de este tipo. Si \(\mathbf{w} \) es un vector propio asociado a \(\lambda \), tal que

\[
(A - \lambda I) \mathbf{w} = \mathbf{0}
\]

entonces, tomando en esta ecuación el complejo conjugado, se obtiene

\[
\left(A - \bar{\lambda} I \right) \bar{\mathbf{w}} = \mathbf{0}
\]

ya que \(\bar{A} = A \) e \(\bar{I} = I \) (siendo estas matrices reales) y el conjugado de un producto complejo es el producto de los conjugados de los factores. De este modo, el conjugado \(\bar{\mathbf{w}} \) de \(\mathbf{w} \) será un vector propio asociado a \(\bar{\lambda} \). Si \(\mathbf{w} = \mathbf{u} + \mathbf{v} i \) entonces \(\bar{\mathbf{w}} = \mathbf{u} - \mathbf{v} i \). La solución con valores complejos asociada con \(\lambda \) y \(\mathbf{w} \) es

\[
X(t) = e^{(\alpha + \beta t)}(\mathbf{u} + \mathbf{v} i) = X_1(t) + iX_2(t),
\]

obtenemos dos soluciones linealmente independientes

\[
X_1(t) = e^{\alpha t}(\mathbf{u} \cos(\beta t) - \mathbf{v} \sin(\beta t)) \quad \text{y} \quad X_2(t) = e^{\alpha t}(\mathbf{u} \sin(\beta t) + \mathbf{v} \cos(\beta t)),
\]

que por el principio de superposición, la solución de \(X' = AX \) es

\[
X(t) = C_1X_1(t) + C_2X_2(t) = C_1e^{\alpha t}(\mathbf{u} \cos(\beta t) - \mathbf{v} \sin(\beta t)) + C_2e^{\alpha t}(\mathbf{u} \sin(\beta t) + \mathbf{v} \cos(\beta t)).
\]

Si \(A \) tiene \(n \) valores propios: \(\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i \) y \(\lambda_3, \lambda_4, \ldots, \lambda_n \) son raíces reales y diferentes. Sean

\[
\mathbf{w}_1 = \mathbf{u} + \mathbf{v} i, \quad \mathbf{w}_2 = \mathbf{u} - \mathbf{v} i, \quad \mathbf{v}_3, \mathbf{v}_4, \ldots, \mathbf{v}_n
\]

los vectores propios correspondientes. Entonces la solución general de \(X' = AX \) es

\[
X = C_1X_1 + C_2X_2 + C_3e^{\lambda_3 t}\mathbf{v}_3 + C_3e^{\lambda_3 t}\mathbf{v}_4 + \cdots + C_ne^{\lambda_n t}\mathbf{v}_n.
\]

Ejemplo 4.24

Resolver \(X' = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} X. \)

Solución.

El polinomio característico es \(p(\lambda) = \begin{vmatrix} 2 - \lambda & 1 \\ -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 + 1 = 0 \), de donde, los eigenva-
lores son $\lambda = 2 \pm i$; así para $\lambda = 2 + i$ el eigenvector correspondiente es

$$(A - (2 + i) I) w = 0 \Leftrightarrow \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow x = -yi$$

de donde

$$w = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -yi \\ y \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} y = u + iv = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} i y.$$

Escogemos

$$w = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} i = u + iv$$

Por lo que, la solución general es

$$X(t) = C_1 e^{at} \left(u \cos (\beta t) - v \sin (\beta t) \right) + C_2 e^{at} \left(u \sin (\beta t) + v \cos (\beta t) \right)$$

$$= C_1 e^{2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos t - \begin{pmatrix} -1 \\ 0 \end{pmatrix} \sin t + C_2 e^{2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \sin t + \begin{pmatrix} -1 \\ 0 \end{pmatrix} \cos t$$

$$= C_1 e^{2t} C_1 \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}.$$

Ejemplo 4.25

Considere el modelo depredador - presa gobernado por el sistema

$$\begin{cases} x'_1(t) = x_1(t) + x_2(t) \\ x'_2(t) = -x_1(t) + x_2(t) \end{cases}$$

si las poblaciones iniciales son $x_1(0) = x_2(0) = 1000$, Determine las poblaciones de las dos especies para $t > 0$.

Solución.

la ecuación característica de la matriz asociada es

$$p(\lambda) = \begin{vmatrix} 1 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1 = 0,$$

de donde los eigenvalores son $\lambda = 1 \pm i$; así para $\lambda = 1 + i$ el eigenvector correspondiente es

$$w = \begin{pmatrix} -i \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} i = u + iv.$$
Luego, la solución general es
\[
X(t) = C_1 e^{\lambda_1 t} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \cos t + \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \sin t + C_2 e^{\lambda_2 t} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \sin t + \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \cos t.
\]

Ahora, hallamos la solución particular
\[
X(0) = \left(\begin{array}{c} x(0) \\ y(0) \end{array} \right) = C_1 \left(\begin{array}{c} 0 \\ 1 \end{array} \right) + C_2 \left(\begin{array}{c} -1 \\ 0 \end{array} \right) = \left(\begin{array}{c} -C_2 \\ C_1 \end{array} \right) = \left(\begin{array}{c} 1000 \\ 1000 \end{array} \right)
\]

así
\[
X(t) = 1000e^{\lambda_1 t} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \cos t + \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \sin t - 1000e^{\lambda_2 t} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \sin t + \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \cos t
\]

\[
= 1000e^{\lambda_1 t} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \cos t + \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \sin t - \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \sin t - \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \cos t.
\]

Ejemplo 4.26

Resolver \(X' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix} X\).

Solución.

El polinomio característico es
\[
p(\lambda) = |A - \lambda I| = \lambda^3 - 3\lambda^2 + 7\lambda - 5 = (\lambda - 1)(\lambda^2 - 2\lambda + 5) = 0,
\]
cuyos eigenvalores son \(\lambda_1 = 1\) y \(\lambda_2 = 1 \pm 2i\).

Para \(\lambda = 1\) el correspondiente vector propio es \(v_1 = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}\) y para \(\lambda = 1 + 2i\) el eigenvector correspondiente es
\[
w = \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix} = 0 + 1i = u + iv.\]
Notemos que si A es una matriz constante, es una matriz constante.

4.5.2 Método de la matriz exponencial

Recuerdemos que la solución del problema de valor inicial escalar

$$x' = ax, \quad x(0) = x_0, \quad (4.18)$$

donde a es una constante, es $x = e^{at}x_0$.

Ahora consideremos el problema de valor inicial para un sistema $n \times n$, es decir,

$$X' = AX, \quad X(0) = X_0, \quad (4.19)$$

donde A es una matriz constante.

Notemos que si X_1, X_2, \ldots, X_n son n soluciones linealmente independientes de $X' = AX$, entonces su solución general es

$$X = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n = c_1 \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \\ \vdots \\ x_{n1}(t) \end{pmatrix} + c_2 \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \\ \vdots \\ x_{n2}(t) \end{pmatrix} + \cdots + c_n \begin{pmatrix} x_{1n}(t) \\ x_{2n}(t) \\ \vdots \\ x_{nn}(t) \end{pmatrix}$$

$$= \begin{pmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \Phi(t) C.$$
por lo que la solución de (4.19) se puede escribir como

\[X = \Phi(t) X_0. \]

Comparando (4.18) y (4.19), y sus soluciones, sugiere que la matriz \(\Phi(t) \) podría ser de naturaleza exponencial. Ahora exploramos esa posibilidad.

Para esto empezamos recordando el polinomio de Taylor.

Teorema 4.13: Teorema de Taylor

Sea \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) tal que existen sus derivadas y son continuas en todos los ordenes en algún intervalo \(I = (x_0 - \delta, x_0 + \delta) \) entonces

\[
f(x) = f(x_0) + f'(x_0)(x-x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}
\]

donde

\[
R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}, \quad \text{con} \quad a < \xi < x.
\]

Evidentemente, \(P_n(x) \) es la otra parte de la fórmula. A \(P_n(x) \) se le denomina el **polinomio de Taylor** de n-ésimo grado de la función \(f \) en el número \(x_0 \), y a \(R_n(x) \) se le llama el resto.

La función exponencial \(f(t) = e^{at} \) puede ser representada mediante el polinomio de Taylor, alrededor de \(t_0 = 0 \), es decir

\[
e^{at} = 1 + at + \frac{a^2}{2!} t^2 + \frac{a^3}{3!} t^3 + \frac{a^4}{4!} t^4 + \cdots = \sum_{k=0}^{\infty} \frac{a^k t^k}{k!}, \quad (4.20)
\]

el cual converge para todo \(t \). Por analogía con la serie de potencias (4.20), ahora podemos definir la expresión simbólica \(e^{At} \).

Definición 4.13: Matriz exponencial

Sea \(A = (a_{ij})_{n \times n} \) con elementos reales (o complejos), la función matriz exponencial, denotada por \(e^{At} \), es definida por

\[
e^{At} = I + At + \frac{A^2}{2!} t^2 + \frac{A^3}{3!} t^3 + \frac{A^4}{4!} t^4 + \cdots = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}.
\]

Teorema 4.14

Sea \(A = (a_{ij})_{n \times n} \) entonces tenemos los siguientes resultados

1. \(e^{A0} = I \).
2. \(\frac{d}{dt} e^{At} = Ae^{At}, \ \forall t \in \mathbb{R} \).
3. Si A es diagonalizable, entonces $e^{At} = e^{CD^{-1}t} = Ce^{Dt}C^{-1}$, $\forall t \in \mathbb{R}$, donde

$$e^{Dt} = \begin{pmatrix} e^{A_1} & 0 & 0 & \cdots & 0 \\ 0 & e^{A_2} & 0 & \cdots & 0 \\ 0 & 0 & e^{A_3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & e^{A_n} \end{pmatrix}$$

4. $e^{A(t+s)} = e^{At}e^{As}$, $\forall t, s \in \mathbb{R}$.
5. $(e^{At})^{-1} = e^{-At}$, $\forall t \in \mathbb{R}$.
6. Si $AB = BA$ entonces $e^{At}B = Be^{At}$, $\forall t \in \mathbb{R}$.
7. Si $AB = BA$ entonces $e^{At}e^{Bt} = e^{(A+B)t}$, $\forall t \in \mathbb{R}$.

Notemos que la propiedad 4. implica que la función $\phi(t) = e^{At}v$ es una solución de $X' = AX$, para cada vector constante v. En efecto,

$$\frac{d}{dt} \phi(t) = \frac{d}{dt} (e^{At}v) = A(e^{At}v) = A\phi(t).$$

Prueba.

1) Es fácil ver que por la definición, tenemos

$$e^{A0} = I + A(0) + \frac{A^2}{2!}(0)^2 + \frac{A^3}{3!}(0)^3 + \cdots = I.$$

2) En efecto,

$$\frac{d}{dt} e^{At} = \frac{d}{dt} \left(I + At + \frac{A^2}{2!}t^2 + \frac{A^3}{3!}t^3 + \frac{A^4}{4!}t^4 + \cdots \right) = \left(A + \frac{A^2}{2!}2t + \frac{A^3}{3!}3t^2 + \frac{A^4}{4!}4t^3 + \cdots \right) = A \left(I + At + \frac{A^2}{2!}t^2 + \frac{A^3}{3!}t^3 + \cdots \right) = Ae^{At}.$$

3) Como A es diagonalizable, existe C invertible tal que $D = C^{-1}AC$, entonces

$$e^{At} = e^{(CD^{-1})t} = I + (CD^{-1})t + (CD^{-1})^2 t^2 + (CD^{-1})^3 t^3 + (CD^{-1})^4 t^4 + \cdots = C \left(I + Dt + D^2t^2 + \frac{D^3}{3!}t^3 + \frac{D^4}{4!}t^4 + \cdots \right) C^{-1} = Ce^{Dt}C^{-1}.$$

4) Fijemos $s \in \mathbb{R}$, sea $t \in \mathbb{R}$ y definimos $\Phi(t) = e^{At}e^{As} - e^{A(t+s)}$. Entonces

$$\Phi'(t) = Ae^{At}e^{As} - Ae^{A(t+s)} = A \left[e^{At}e^{As} - e^{A(t+s)} \right] = A\Phi(t), \ \forall t \in \mathbb{R}.$$
Luego \(\Phi \) es una solución de \(X' = AX \). Además, \(\Phi(0) = e^{As} - e^{As} = 0 \), y por el teorema de la unicidad, \(\Phi(t) = 0 \) para todo \(t \in \mathbb{R} \).

De aquí, como \(s \) es arbitrario, \(e^{A(t+s)} = e^{At}e^{As} \), para todo \(t \in \mathbb{R} \).

5) Usando 4), tenemos que

\[
e^{At}e^{-At} = e^{At}e^{A(-t)} = e^{A(t-t)} = I, \quad \forall t \in \mathbb{R}.
\]

Esto implica que \((e^{At})^{-1} = e^{-At}, \quad \forall t \in \mathbb{R} \).

6) Similar a 4)

7) Asumimos que \(AB = BA \) y definamos \(\Phi(t) = e^{At}e^{Bt} - e^{(A+B)t} \).

Usando la regla del producto y 6) obtenemos

\[
\Phi'(t) = Ae^{At}e^{Bt} + e^{At}Be^{Bt} - (A + B)e^{(A+B)t} = Ae^{At}e^{Bt} + Be^{At}e^{Bt} - (A + B)e^{(A+B)t} = (A + B)\Phi(t), \quad \forall t \in \mathbb{R}.
\]

Además, \(\Phi(0) = I - I = 0 \) y por el teorema de la unicidad, \(\Phi(t) = 0 \), para todo \(t \in \mathbb{R} \). Luego

\[
e^{At}e^{Bt} = e^{(A+B)t}, \quad \text{para todo} \quad t \in \mathbb{R}.
\]

Observación.

1. Un sistema dinámico lineal viene dado por una expresión de la forma \(X' = AX \), \(X \in \mathbb{R}^n \) donde \(A \) es una matriz constante de orden \(n \times n \). Si \(A \) tiene todos sus valores propios reales y distintos: \(\lambda_1, \lambda_2, \ldots, \lambda_n \), entonces el conjunto de vectores propios correspondientes \(\{v_1, v_2, \ldots, v_n\} \) forma una base de \(\mathbb{R}^n \), en cuyo caso la matriz \(C = [v_1 v_2 \cdots v_n] \) es inversible y \(C^{-1}AC = diag[\lambda_1 \lambda_2 \cdots \lambda_n] = D \); además

\[
x(t) = e^{At}x(0) = Ce^{Dt}C^{-1}x(0) = Cdiag[e^{\lambda_1 t} e^{\lambda_2 t} \cdots e^{\lambda_n t}]C^{-1}x_0
\]

Si se realiza el cambio de coordenadas: \(y = C^{-1}x \), se obtiene

\[
y' = C^{-1}x' = C^{-1}(Ax) = \left(C^{-1}A\right)x = C^{-1}ACy = Dy,
\]

por lo que

\[
y(t) = e^{Dt}y(0) = diag[e^{\lambda_1 t} e^{\lambda_2 t} \cdots e^{\lambda_n t}]y(0).
\]

2. Como la matriz exponencial satisface la ecuación diferencial

\[
\frac{d}{dt}exp(At) = Aexp(At)
\]

y para \(t = 0 \), \(exp(At) \) satisface la condición inicial

\[
exp(At)\big|_{t=0} = I.
\]

Por lo tanto, es posible identificar \(exp(At) \) con la matriz fundamental \(\Phi(t) \), que satisface el mismo PVI, pues

\[
\Phi'(t) = A\Phi(t), \quad \Phi(0) = I.
\]
Ejemplo 4.27

Resolver

\[
\begin{aligned}
&x_1'(t) = -2x_1(t) + x_2(t) \\
&x_2'(t) = 5x_1(t) + 2x_2(t)
\end{aligned}
\]

\[
x_1(0) = 60 \quad y \quad x_2(0) = 30
\]

¿Para qué valor de \(t \), \(x_2(t) = 0 \) ?

Solución.

El sistema es equivalente a

\[
X' = \begin{pmatrix}
x_1'(t) \\
x_2'(t)
\end{pmatrix} = \begin{pmatrix}
-2 & 1 \\
5 & 2
\end{pmatrix} \begin{pmatrix}
x_1(t) \\
x_2(t)
\end{pmatrix} = AX.
\]

Los valores propios de \(A \) son:

\[
p(\lambda) = \begin{vmatrix}
-2 - \lambda & 1 \\
5 & 2 - \lambda
\end{vmatrix} = \lambda^2 - 4 - 5 = \lambda^2 - 9 \Rightarrow \lambda = -3, \lambda = 3
\]

Hallamos los vectores propios.

(i.) Para \(\lambda = -3 \)

\[
(A + 3I)X = 0 \Rightarrow \begin{pmatrix}
1 & 1 \\
5 & 5
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix} \Rightarrow x_1 + x_2 = 0
\]

Así un vector propio es \(v_1 = \begin{pmatrix}
1 \\
-1
\end{pmatrix} \).

(ii.) Para \(\lambda = 3 \)

\[
(A - 3I)X = 0 \Rightarrow \begin{pmatrix}
-5 & 1 \\
5 & -1
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix} \Rightarrow -5x_1 + x_2 = 0
\]

Así un vector propio es \(v_2 = \begin{pmatrix}
1 \\
5
\end{pmatrix} \).
La matriz \(C = (v_1 \ v_2) = \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix} \) y \(C^{-1} = \frac{1}{6} \begin{pmatrix} 5 & -1 \\ 1 & 1 \end{pmatrix} \), por lo que

\[
 e^{At} = Ce^{Dt}C^{-1} = \frac{1}{6} \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} e^{-3t} & 0 \\ 0 & e^{3t} \end{pmatrix} \begin{pmatrix} 5 & -1 \\ 1 & 1 \end{pmatrix}
\]

\[
 = \frac{1}{6} \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 5e^{-3t} - e^{-3t} \\ e^{3t} e^{3t} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5e^{-3t} + e^{3t} & -e^{-3t} + e^{3t} \\ -5e^{-3t} + 5e^{3t} & e^{-3t} + 5e^{3t} \end{pmatrix}
\]

Finalmente, la solución es

\[
 X(t) = e^{At}X(0) = \frac{1}{6} \begin{pmatrix} 5e^{-3t} + e^{3t} - e^{-3t} & e^{3t} \\ -5e^{-3t} + 5e^{3t} e^{-3t} & 5e^{3t} \end{pmatrix} \begin{pmatrix} 60 \\ 30 \end{pmatrix}
\]

\[
 = \begin{pmatrix} 5e^{-3t} + e^{3t} - e^{-3t} & e^{3t} \\ -5e^{-3t} + 5e^{3t} e^{-3t} & 5e^{3t} \end{pmatrix} \begin{pmatrix} 10 \\ 5 \end{pmatrix} = \begin{pmatrix} 45e^{-3t} + 15e^{3t} \\ 75e^{3t} - 45e^{-3t} \end{pmatrix}
\]

\[
 = 15 \begin{pmatrix} 3e^{-3t} + e^{3t} \\ 5e^{3t} - 3e^{-3t} \end{pmatrix} .
\]

Ahora, \(x_2(t) = 0 \Leftrightarrow 5e^{3t} - 3e^{-3t} = 0 \Leftrightarrow e^{6t} = \frac{3}{5} \Leftrightarrow t = \frac{1}{6} \ln \left(\frac{3}{5} \right) = -8.5138 \times 10^{-2}.

Ejemplo 4.28

Modelo de cooperación de especies (símbiosis). Considere el modelo simbiótico gobernado por

\[
\begin{align*}
 x'(t) &= -\frac{1}{2}x(t) + y(t) \\
 y'(t) &= \frac{1}{4}x(t) - \frac{1}{2}y(t)
\end{align*}
\]

\[
x(0) = 200 \quad , \quad y(0) = 500
\]

1. Determine la población de cada especie para \(t > 0 \).

2. Calcule \(\lim_{t \to +\infty} X(t) \), donde \(X = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \). Interprete su respuesta.

Solución.
El sistema es equivalente a

\[X' = \begin{pmatrix} 1/4 & -1/2 \\ -1/2 & 1/4 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = AX. \]

Los valores propios de \(A \) son:

\[
p(\lambda) = |A - \lambda I| = \begin{vmatrix} -1/2 - \lambda & 1 \\ 1/4 & -1/2 - \lambda \end{vmatrix} = (\lambda + 1)^2 - \frac{1}{4} = \lambda (\lambda + 1) = 0
\]
de donde \(\lambda_1 = 0, \lambda_2 = -1; \) los vectores propios correspondientes son: \(v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \) y \(v_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \).

La matriz \(C = (v_1 \ v_2) = \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} \) y \(C^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix} \), por lo que

\[
e^{At} = Ce^{Dt}C^{-1} = \frac{1}{4} \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{-t} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2e^{-t} + 2 & 4 - 4e^{-t} \\ 1 - e^{-t} & 2e^{-t} + 2 \end{pmatrix}.
\]

Luego, la solución del PVI es

\[
X(t) = \frac{1}{4} \begin{pmatrix} 2e^{-t} + 2 & 4 - 4e^{-t} \\ 1 - e^{-t} & 2e^{-t} + 2 \end{pmatrix} \begin{pmatrix} 200 \\ 500 \end{pmatrix} = \begin{pmatrix} 600 - 400e^{-t} \\ 200e^{-t} + 300 \end{pmatrix},
\]
es decir, \(x(t) = 600 - 400e^{-t} \) y \(y(t) = 200e^{-t} + 300 \).

(b) Claramente

\[
\lim_{t \to +\infty} X(t) = \lim_{t \to +\infty} \begin{pmatrix} 600 - 400e^{-t} \\ 200e^{-t} + 300 \end{pmatrix} = \begin{pmatrix} 600 \\ 300 \end{pmatrix} = X_0,
\]
que representa las poblaciones iniciales.
Valor Propio Repetido

Si $A = (a_{ij})_{2x2}$ tiene polinomio característico $p(\lambda) = (\lambda - \lambda_1)^2$ para la cual existe un único vector propio v_1, usamos el teorema de Cayley- Hamilton, es decir, $p(A) = (A - \lambda_1 I)^2 = 0$, para calcular e^{At} de la siguiente forma

$$e^{At} = e^t e^{(A-\lambda_1 I)t} = e^t \left\{ I + (A - \lambda_1 I) t + \frac{(A - \lambda_1 I)^2 t^2}{2} \right\} = e^t \{ I + (A - \lambda_1 I) t \}.$$

Ejemplo 4.29

Resolver el problema de valor inicial

$$\begin{cases}
X' = AX \\
X(0) = X_0
\end{cases},$$

donde $A = \begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}$ y $X_0 = \begin{pmatrix} 20 \\ 10 \end{pmatrix}$.

Solución.

El polinomio característico es: $p(\lambda) = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$ entonces

$$e^{At} = e^t e^{(A-I)t} = e^t \left\{ I + (A - I) t + \frac{(A - I)^2 t^2}{2} \right\}$$

$$= e^t \{ I + (A - I) t \} = e^t \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \right\} + e^t \left\{ \begin{pmatrix} 0 & 2 \\ -2 & 2 \end{pmatrix} \right\} t$$

$$= e^t \begin{pmatrix} 1 & 2t \\ -2t & 1 + 2t \end{pmatrix}$$

luego, la solución es

$$X(t) = e^{At} X_0 = e^t \begin{pmatrix} 1 & 2t \\ -2t & 1 + 2t \end{pmatrix} \begin{pmatrix} 20 \\ 10 \end{pmatrix} = \begin{pmatrix} 20 e^t (t+1) \\ -10 e^t (2t-1) \end{pmatrix}.$$

Ejemplo 4.30

Resolver el problema de valor inicial

$$\begin{cases}
x'_1(t) = 2x_1(t) + 4x_2(t) \\
x'_2(t) = -x_1(t) + 6x_2(t) \\
x_1(0) = -1, \quad x_2(0) = 6
\end{cases}$$
Solución.

La matriz asociada es \[A = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix} \]. El valor propio de \(A \) es

\[
p(\lambda) = \begin{vmatrix} 2 - \lambda & 4 \\ -1 & 6 - \lambda \end{vmatrix} = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^2 \Rightarrow \lambda = 4
\]

luego

\[
e^{At} = e^{4t} e^{(A-4I)t} = e^{4t} [I + (A-4I) t]
\]

\[
= e^{4t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + e^{4t} \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} t = e^{4t} \begin{pmatrix} 1 - 2t & 4t \\ -t & 2t+1 \end{pmatrix}
\]

finalmente, la solución es

\[
X(t) = e^{At} X(0) = e^{4t} \begin{pmatrix} 1 - 2t & 4t & -1 \\ -t & 2t+1 & 6 \end{pmatrix} = e^{4t} \begin{pmatrix} 26t - 1 \\ 13t + 6 \end{pmatrix}.
\]

Otra forma.

El vector propio correspondiente es \(v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \). Hallamos el vector propio generalizado:

\[
(A - 4I) v_2 = v_1 \text{ de donde } v_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}.
\]

Así, la solución es

\[
X = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{4t} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} t + \begin{pmatrix} -1 \\ 0 \end{pmatrix} e^{4t}.
\]

Aplicando las condiciones iniciales

\[
X(0) = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 6 \end{pmatrix} \Rightarrow C_1 = 6, C_2 = 13.
\]

Luego, la solución particular es \(x_1(t) = e^{4t} (26t - 1) \) y \(x_2(t) = e^{4t} (13t + 6) \).
Ejemplo 4.31

Dado el problema de valor inicial

\[
\begin{cases}
X' = AX \\
X(0) = X_0
\end{cases}
\]

donde

\[
A = \begin{pmatrix}
-2 & 1 & 6 \\
0 & -2 & 5 \\
0 & 0 & -2
\end{pmatrix}, \quad X = \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \quad y \quad X_0 = X(0) = \begin{pmatrix}
1 \\
3 \\
2
\end{pmatrix}.
\]

Halle el correspondiente vector propio asociado y resuelva el problema de valor inicial.

Solución.

El polinomio característico de \(A \) es:

\[
p(\lambda) = |A - \lambda I| = \begin{vmatrix}
-2 - \lambda & 1 & 6 \\
0 & -2 - \lambda & 5 \\
0 & 0 & -2 - \lambda
\end{vmatrix} = -(\lambda + 2)^3.
\]

Por el teorema de Cayley-Hamilton: \(p(A) = (A + 2I)^3 = 0 \), y de la definición de matriz exponencial obtenemos

\[
e^{At} = e^{-2t} \left(e^{(A+2I)t} \right) = e^{2t} \left\{ I + (A + 2I) t + (A + 2I)^2 \frac{t^2}{2} \right\}
\]

\[
= e^{2t} \left(\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} + \begin{pmatrix}
0 & 1 & 6 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{pmatrix} t + \begin{pmatrix}
0 & 0 & 5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \frac{t^2}{2} \right)
\]

\[
= e^{2t} \begin{pmatrix}
1 & t & 5t^2 + 6t \\
0 & 1 & 5t \\
0 & 0 & 1
\end{pmatrix}
\]

entonces, la solución es

\[
X(t) = e^{At} C = e^{2t} \begin{pmatrix}
1 & t & 5t^2 + 6t \\
0 & 1 & 5t \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 \\
3 \\
2
\end{pmatrix} = e^{2t} \begin{pmatrix}
5t^2 + 15t + 1 \\
10t + 3 \\
2
\end{pmatrix}
\]
Ejemplo 4.32

Dado el problema de valor inicial
\[
\begin{cases}
X' = AX \\
X(0) = X_0
\end{cases}
\]

\[
A = \begin{pmatrix}
1 & 10 & -12 \\
2 & 2 & 3 \\
2 & -1 & 6
\end{pmatrix}, \quad X = \begin{pmatrix}
x \\
y \\
z
\end{pmatrix}, \quad X_0 = X(0) = \begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
\]

(a) Halle el correspondiente vector propio asociado.

(b) Resolver el problema de valor inicial.

Solución.

(a) El polinomio característico es:
\[
p(\lambda) = \lambda^3 - 9\lambda^2 + 27\lambda - 27 = (\lambda - 3)^3.
\]

Calculamos el vector propio correspondiente
\[
(A - 3I)v = 0 \iff \begin{pmatrix}
-2 & 10 & -12 \\
2 & -1 & 3 \\
2 & -1 & 3
\end{pmatrix} \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\]

\[
\iff \begin{pmatrix}
-1 & 5 & -6 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \iff \begin{cases}
-x + 5y - 6z = 0 \\
y - z = 0
\end{cases}
\]

de donde \(v = \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
-y \\
y \\
y
\end{pmatrix} = \begin{pmatrix}
-1 \\
1 \\
1
\end{pmatrix} \).

(b) Por el teorema de Cayley-Hamilton: \(p(A) = (A - 3I)^3 = \theta\), y de la definición de matriz expo-
nencial obtenemos

\[
e^{At} = e^{3t} e^{(A-3I)t} = e^{3t} \left\{ I + (A-3I) t + \frac{(A-3I)^2 t^2}{2} \right\}
\]

\[
= e^{3t} \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} -2 & 10 & -12 \\ 2 & -1 & 3 \\ 2 & -1 & 3 \end{pmatrix} t + \begin{pmatrix} 0 & -18 & 18 \\ 0 & 18 & -18 \end{pmatrix} \frac{t^2}{2} \right\}
\]

\[
= e^{3t} \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} -2 & 10 & -12 \\ 2 & -1 & 3 \\ 2 & -1 & 3 \end{pmatrix} t + \begin{pmatrix} 0 & -9 & 9 \\ 0 & 9 & -9 \end{pmatrix} t^2 \right\}
\]

\[
= e^{3t} \begin{pmatrix} 1-2t & 10t-9t^2 & 9t^2-12t \\ 2t & 9t^2-t+1 & 3t-9t^2 \\ 2t & 9t^2-t & -9t^2+3t+1 \end{pmatrix}
\]

entonces, la solución es

\[
X(t) = e^{At} X_0 = e^{3t} \begin{pmatrix} 1-2t & 10t-9t^2 & 9t^2-12t \\ 2t & 9t^2-t+1 & 3t-9t^2 \\ 2t & 9t^2-t & -9t^2+3t+1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = e^{3t} \begin{pmatrix} 9t^2-18t+1 \\ -9t^2+9t+2 \\ -9t^2+9t+3 \end{pmatrix}.
\]

Ejemplo 4.33

Resolver el problema de valor inicial

\[
\begin{align*}
\frac{dx}{dt} &= y + 2z \\
\frac{dy}{dt} &= x + 2z \\
\frac{dz}{dt} &= -2y - 3z
\end{align*}
\]

\[
x(0) = 1, \quad y(0) = 0 \quad y \quad z(0) = 0.
\]

Solución.

La matriz asociada al sistema es

\[
A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & -2 & -3 \end{pmatrix},
\]

cuyo polinomio característico es

\[
p(\lambda) = \lambda^3 + 3\lambda^2 + 3\lambda + 1 = (\lambda + 1)^3.
\]
Luego,
\[
e^{At} e^{(A+I)t} = e^{-t} \left(I + (A+I)t + \frac{(A+I)^2 t^2}{2} \right)
\]
\[
= e^{-t} \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & -2 & -2 \end{pmatrix} t + \frac{1}{2} \begin{pmatrix} 2 & -2 & 0 \\ 2 & -2 & 0 \\ -2 & 2 & 0 \end{pmatrix} t^2 \right\}
\]
\[
= e^{-t} \begin{pmatrix} t^2 + t + 1 & t - t^2 & 2t \\ t^2 + t & -t^2 + t + 1 & 2t \\ -t^2 & t^2 - 2t & 1 - 2t \end{pmatrix}.
\]

Finalmente, la solución del PVI es
\[
X(t) = e^{At} X_0 = e^{-t} \begin{pmatrix} t^2 + t + 1 & t - t^2 & 2t \\ t^2 + t & -t^2 + t + 1 & 2t \\ -t^2 & t^2 - 2t & 1 - 2t \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = e^{-t} \begin{pmatrix} t^2 + t + 1 \\ t^2 + t \\ -t^2 \end{pmatrix}.
\]

Ejemplo 4.34

Resolver \(X' = AX\) donde \(A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\).

Solución.

El polinomio característico es
\[
p(\lambda) = |A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 & 3 & 4 \\ 0 & 1 - \lambda & 2 & 3 \\ 0 & 0 & 1 - \lambda & 2 \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^4.
\]
Por el teorema de Cayley-Hamilton, $p(A) = (I - A)^4 = 0$. Entonces

$$e^{At} = e^{t(A-I)t} = e^{At} \left\{ I + (A-I)^2 \left(\frac{t^2}{2} + (A-I)^3 \frac{t^3}{6} + (A-I)^4 \frac{t^4}{24} + \cdots \right) \right\}$$

$$= e^{At} \left\{ I + (A-I)^2 \left(\frac{t^2}{2} + (A-I)^3 \frac{t^3}{6} \right) \right\}$$

$$= e^{At} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) + e^{At} \left(\begin{array}{cccc} 0 & 2 & 3 & 4 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right) t + \left(\begin{array}{cccc} 0 & 0 & 4 & 12 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \frac{t^2}{2} + \left(\begin{array}{cccc} 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \frac{t^3}{6}$$

$$= e^{At} \left(\begin{array}{cccc} 1 & 2t & 3t^2 + t^3 \\ 0 & 1 & 2t \\ 0 & 0 & 1 \end{array} \right) .$$

Finalmente, la solución es

$$X(t) = e^{At} C = e^{At} \left(\begin{array}{cccc} 1 & 2t & 3t^2 + t^3 & 4t + 6t^2 + \frac{4}{3} t^3 \\ 0 & 1 & 2t & 3t^2 + t^3 \\ 0 & 0 & 1 & 2t \\ 0 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \end{array}$$

$$= e^t \left(\begin{array}{c} C_1 + C_3 (8t^2 + 3t) + 2tC_2 + C_4 \left(\frac{4}{3} t^3 + 6t^2 + 4t \right) \\
C_2 + C_4 (2t^2 + 3t) + 2tC_3 \\
C_3 + 2tC_4 \\
C_4 \end{array} \right)$$

4.6 Sistemas de ecuaciones diferenciales no homogéneas

4.6.1 Matriz fundamental

La teoría de los sistemas de ecuaciones diferenciales lineales puede aclararse aún mejor mediante la matriz fundamental. Suponga que X_1, X_2, \cdots, X_n forman un conjunto fundamental de soluciones de la ecuación

$$X' = A(t) X, \quad t \in I.$$ (4.21)
Entonces, se dice que la matriz
\[
\Phi(t) = \begin{pmatrix}
 x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\
 x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t)
\end{pmatrix},
\]
cuyas columnas son los vectores \(X_1, X_2, \ldots, X_n\), es una matriz fundamental para el sistema (4.21). Notar que cualquier matriz fundamental es no singular, ya que sus columnas son vectores linealmente independientes.

Recordemos que si \(X_1, X_2, \ldots, X_n\) son \(n\) soluciones linealmente independientes de \(X' = AX\), entonces su solución general es
\[
X = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n = c_1 \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \\ \vdots \\ x_{n1}(t) \end{pmatrix} + c_2 \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \\ \vdots \\ x_{n2}(t) \end{pmatrix} + \cdots + c_n \begin{pmatrix} x_{1n}(t) \\ x_{2n}(t) \\ \vdots \\ x_{nn}(t) \end{pmatrix} = \Phi(t) C.
\]

Ejemplo 4.35

Halle la solución general de \(X' = \begin{pmatrix} 1 & -4 \\ 1 & 5 \end{pmatrix} X\).

Solución.

El polinomio característico de \(A\) es \(p(\lambda) = \lambda^2 - 6\lambda + 9\), cuyo valor propio es \(\lambda = 3\).

Podemos demostrar que las funciones \(X_1(t) = \begin{pmatrix} -2e^{3t} \\ e^{3t} \end{pmatrix}\) y \(X_2(t) = \begin{pmatrix} (1 - 2t)e^{3t} \\ te^{3t} \end{pmatrix}\) son soluciones linealmente independientes del sistema. Por lo tanto, la matriz fundamental del sistema es
\[
\Phi(t) = \begin{pmatrix}
 -2e^{3t} & (1 - 2t)e^{3t} \\
 e^{3t} & te^{3t}
\end{pmatrix}.
\]
La solución general es
\[
X(t) = \Phi(t) C = \begin{pmatrix} -2e^{3t} & (1-2t)e^{3t} \\ e^{3t} & te^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} c_1 (-2e^{3t}) + c_2 (1-2t)e^{3t} \\ c_1 e^{3t} + c_2 te^{3t} \end{pmatrix}.
\]

\[
= c_1 \begin{pmatrix} -2e^{3t} \\ e^{3t} \end{pmatrix} + c_2 \begin{pmatrix} (1-2t)e^{3t} \\ te^{3t} \end{pmatrix} = c_1 X_1(t) + c_2 X_2(t).
\]

Ejemplo 4.36

Encuentre una matriz fundamental y la solución general del sistema
\[
X' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} X.
\]

Solución.

El polinomio característico de A es $p(\lambda) = \lambda^2 - 4\lambda - 12$, cuyos valores propios son
\[
\lambda^2 - 4\lambda - 12 = (\lambda + 1)(\lambda - 3) = 0 \iff \lambda_1 = -1, \lambda_2 = 3
\]

con vectores propios correspondientes $v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ y $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Luego, las columnas de la matriz fundamental son $X_i = v_i e^{\lambda_i t}$, $i = 1, 2$ y por lo tanto, la matriz fundamental del sistema es
\[
\Phi(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -2e^{-t} & 2e^{3t} \end{pmatrix}.
\]

La solución general es
\[
X(t) = \Phi(t) C = \begin{pmatrix} e^{-t} & e^{3t} \\ -2e^{-t} & 2e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} c_1 e^{-t} + c_2 e^{3t} \\ 2c_2 e^{3t} - 2c_1 e^{-t} \end{pmatrix},
\]
es decir, $x(t) = c_1 e^{-t} + c_2 e^{3t}$, $y(t) = 2c_2 e^{3t} - 2c_1 e^{-t}$.

La solución del PVI
\[
\begin{aligned}
X' &= AX \\
X(t_0) &= X_0
\end{aligned}
\]

puede escribirse en términos de una matriz fundamental. En efecto, como la solución general de (4.21) es
\[
X(t) = \Phi(t) C, \quad (4.22)
\]
donde C es un vector constante con componentes arbitrarias c_1, c_2, \cdots, c_n. Entonces basta elegir el
vector C en (4.22) de modo que se satisfaga la condición inicial del PVI, de donde, C debe satisfacer

$$X(0) = X_0 = \Phi(t_0)C.$$

Por lo tanto, como $\Phi(t)$ es no singular, $C = \Phi^{-1}(t_0)X_0$ y así, la solución del PVI es

$$X(t) = \Phi(t)\Phi^{-1}(t_0)X_0.$$

Veamos el siguiente ejemplo.

Ejemplo 4.37

Resolver el PVI $X' = \begin{pmatrix} 1 & -4 \\ 1 & 5 \end{pmatrix} X$, $X(0) = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

Solución.

Se observa que la solución general es $\Phi(t)C$, con $\Phi(t) = \begin{pmatrix} -2e^{3t} & (1-2t)e^{3t} \\ e^{3t} & te^{3t} \end{pmatrix}$. Luego, para resolver el PVI escogemos C tal que

$$X(0) = \Phi(0)C = X_0 \iff \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}.$$

Resolviendo el sistema algebraico, obtenemos

$$\begin{cases} -2c_1 + c_2 = -2 \\ c_1 = 3 \end{cases} \Rightarrow c_1 = 3 \text{ y } c_2 = 4.$$

La única solución del PVI es

$$X(t) = \begin{pmatrix} -2e^{3t} & (1-2t)e^{3t} \\ e^{3t} & te^{3t} \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -2e^{3t} - 8te^{3t} \\ 3e^{3t} + 4te^{3t} \end{pmatrix}.$$

El determinante de la matriz fundamental $\Phi(t)$,

$$|\Phi(t)| = \begin{vmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{vmatrix}$$

es llamado el Wronskiano de (X_1, X_2, \cdots, X_n), el cual es denotado por $W = W(X_1, X_2, \cdots, X_n)$. Como (X_1, X_2, \cdots, X_n) es un conjunto fundamental de soluciones de $X' = AX$, entonces

$$W(X_1, X_2, \cdots, X_n)(t) \neq 0, \forall t \in I.$$
Es decir, la matriz fundamental $\Phi(t)$ es no singular, y Φ es solución del sistema homogéneo $X' = AX$, en efecto,

$$
\Phi'(t) = \begin{bmatrix}
X'_1 & X'_2 & \cdots & X'_n
\end{bmatrix} = \begin{bmatrix}
AX_1 & AX_2 & \cdots & AX_n
\end{bmatrix}
= A \begin{bmatrix}
X_1 & X_2 & \cdots & X_n
\end{bmatrix} = A\Phi(t).
$$

4.6.2 Método de variación de parámetros

Un sistema en la forma vectorial como

$$
X' = AX + F(t), \quad t \in I \quad (4.23)
$$
donde X y F son funciones vectoriales con n componentes y A es una función matricial de orden $n \times n$, es denominada un sistema de ecuaciones lineales no homogéneo.

Asociada con (4.23) es la ecuación homogénea

$$
X' = AX, \quad (4.24)
$$
cuya solución es

$$
X_h = c_1X_1 + c_2X_2 + \cdots + c_nX_n = \Phi(t)C.
$$

La conexión entre (4.23) y (4.24) es previsto por el siguiente teorema.

Teorema 4.15

Sea $\{X_1, X_2, \cdots, X_n\}$ un conjunto fundamental de soluciones de $X' = AX$ sobre un intervalo I y sea X_p una solución particular de (4.23). Entonces la solución general de (4.23) sobre I consiste del conjunto de todas las funciones vectoriales de la forma

$$
c_1X_1 + c_2X_2 + \cdots + c_nX_n + X_p, \quad (4.25)
$$
donde c_1, c_2, \cdots, c_n son constantes.

Prueba.

Primero, verificamos que cada función de la forma (4.25) es una solución de la ecuación (4.23). Como

$$
X'_p = AX_p + F(t), \quad X'_i = AX_i, \quad 1 \leq i \leq n,
$$

tenemos

$$
\left(c_1X_1 + c_2X_2 + \cdots + c_nX_n + X_p\right)' = c_1X'_1 + c_2X'_2 + \cdots + c_nX'_n + X'_p
= c_1AX_1 + c_2AX_2 + \cdots + c_nAX_n + AX_p + F(t)
= A\left(c_1X_1 + c_2X_2 + \cdots + c_nX_n + X_p\right) + F(t).
$$

por lo tanto $c_1X_1 + c_2X_2 + \cdots + c_nX_n + X_p$ es una solución.

Debemos demostrar que cada solución de la ecuación (4.23) es de la forma (4.25).

Sea X una solución. Entonces $X' = AX + F(t)$ y

$$
\left(X - X_p\right)' = X' - X'_p = (AX + F(t)) - (AX_p + F(t)) = A\left(X - X_p\right).
$$

Luego, $X - X_p$ es una solución de la ecuación homogénea (4.24) entonces, existen números c_1, c_2, \cdots, c_n tal que

$$
X - X_p = c_1X_1 + c_2X_2 + \cdots + c_nX_n.
$$
Sistemas de ecuaciones diferenciales no homogéneas

4. Sistemas de ecuaciones diferenciales lineales de primer orden

o

\[X = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n + X_p. \]

Así, \(X \) es de la forma (4.25). Esto completa la prueba.

El método de variación de parámetros para sistemas nos permite construir una solución particular de la ecuación no homogénea siempre que se conozca la matriz fundamental para la ecuación homogénea asociada.

Debemos encontrar funciones \(c_1(t), c_2(t), \cdots, c_n(t) \) tal que

\[c_1(t) X_1 + c_2(t) X_2 \cdots + c_n(t) X_n \]

es una solución de la ecuación no homogénea \(X' = AX + F(t) \) sobre el intervalo \(I \). Entonces, suponemos que la solución particular es dada por

\[X_p(t) = c_1(t) X_1 + c_2(t) X_2 \cdots + c_n(t) X_n = \Phi(t) U(t), \quad (4.26) \]

donde

\[U(t) = \begin{bmatrix} c_1(t) \\ c_2(t) \\ \vdots \\ c_n(t) \end{bmatrix}. \]

Por la regla del producto,

\[X'_p = \Phi(t) U'(t) + \Phi'(t) U(t). \quad (4.27) \]

Al sustituir (4.26) y (4.27) en (4.23) se obtiene

\[\Phi(t) U'(t) + \Phi'(t) U(t) = A\Phi(t) U(t) + F(t). \]

Reemplazando \(\Phi'(t) = A\Phi(t) \) en la última expresión resulta

\[\Phi(t) U'(t) + A\Phi(t) U(t) = A\Phi(t) U(t) + F(t) \]

simplificando obtenemos \(\Phi(t) U'(t) = F(t) \).

Como \(\Phi(t) \) es no singular, existe \(\Phi^{-1}(t) \) por lo que

\[U'(t) = \Phi^{-1}(t) F(t), \]

y por lo tanto

\[U(t) = \int \Phi^{-1}(t) F(t) \, dt. \]

De esta manera, la solución particular de (4.23) está dada por

\[X_p = \Phi(t) \int \Phi^{-1}(t) F(t) \, dt. \]

Así, la solución general de (4.23) es

\[X_g = X_h + X_p = \Phi(t) C + \Phi(t) \int \Phi^{-1}(t) F(t) \, dt. \]
Problema de valor inicial.

La solución general de (4.23) en un intervalo se puede expresar en la siguiente forma alternativa

\[X = \Phi(t) C + \Phi(t) \int_{t_0}^{t} \Phi^{-1}(s) F(s) \, ds, \]

(4.28)

donde \(t \) y \(t_0 \) son puntos del intervalo. Esta última forma es útil para resolver (4.23) sujeta a la condición inicial \(X(t_0) = X_0 \), ya que se escogen los límites de integración de modo que la solución particular se anule cuando \(t = t_0 \). Al sustituir \(t = t_0 \) en (4.28) se obtiene

\[X_0 = \Phi(t_0) C, \]

de donde

\[C = \Phi^{-1}(t_0) X_0. \]

Al reemplazar este resultado en (4.28) se llega a obtener la solución del PVI:

\[X = \Phi(t) \Phi^{-1}(t_0) X_0 + \Phi(t) \int_{t_0}^{t} \Phi^{-1}(s) F(s) \, ds. \]

Ejemplo 4.38

Resolver el PVI

\[\begin{cases} X' = AX + F(t) \\ x(0) = 0, \ y(0) = 0 \end{cases}, \]

donde \(A = \begin{pmatrix} 6 & -7 \\ 1 & -2 \end{pmatrix} \) y \(F(t) = \begin{pmatrix} 60 \\ 90 \end{pmatrix} \).

Solución.

El polinomio característico es

\[p(\lambda) = |A - \lambda I| = \begin{vmatrix} 6 - \lambda & -7 \\ 1 & -2 - \lambda \end{vmatrix} = (\lambda + 1)(\lambda - 5), \]

de donde los valores propios son \(\lambda_1 = -1 \) y \(\lambda_2 = 5 \) cuyos correspondientes vectores propios son

\[v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \] y \(v_2 = \begin{pmatrix} 7 \\ 1 \end{pmatrix} \).

Entonces dos soluciones linealmente independientes del problema homogéneo son

\[X_1(t) = e^{\lambda_1 t} v_1 = e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

y \(X_2(t) = e^{\lambda_2 t} v_2 = e^{5t} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \), por lo que la matriz fundamental es

\[\Phi(t) = \begin{pmatrix} X_1 & X_2 \end{pmatrix} = \begin{pmatrix} e^{-t} & 7e^{5t} \\ e^{-t} & e^{5t} \end{pmatrix}. \]

Como \(X(0) = \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = X_0 \) y

\[\Phi^{-1}(t) = \frac{1}{6} \begin{pmatrix} -e^{t} & 7e^{t} \\ e^{-5t} & -e^{-5t} \end{pmatrix}, \]
entonces, la solución es

\[X(t) = \Phi(t) \Phi^{-1}(t_0) X_0 + \Phi(t) \int_{t_0}^{t} \Phi^{-1}(s) F(s) \, ds \]

\[= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} e^{-t} & 7e^{5t} \\ e^{-t} & e^{5t} \end{pmatrix} \int_{0}^{t} \frac{1}{6} \begin{pmatrix} -e^s & 7e^s \\ e^{-5s} & -e^{-5s} \end{pmatrix} \begin{pmatrix} 60 \\ 90 \end{pmatrix} \, ds \]

\[= \begin{pmatrix} e^{-t} & 7e^{5t} \\ e^{-t} & e^{5t} \end{pmatrix} \int_{0}^{t} \begin{pmatrix} -e^s & 7e^s \\ e^{-5s} & -e^{-5s} \end{pmatrix} \begin{pmatrix} 10 \\ 15 \end{pmatrix} \, ds = \begin{pmatrix} e^{-t} & 7e^{5t} \\ e^{-t} & e^{5t} \end{pmatrix} \int_{0}^{t} \begin{pmatrix} 95e^s \\ -5e^{-5s} \end{pmatrix} \, ds \]

\[= \begin{pmatrix} 7e^{5t} (e^{-5t} - 1) + e^{-t} (95e^t - 95) \\ e^{5t} (e^{-5t} - 1) + e^{-t} (95e^t - 95) \end{pmatrix}. \]

Ejemplo 4.39

Resolver \(X' = AX + f(t) \), donde \(A = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix} \) y \(f(t) = \begin{pmatrix} t \\ 5 \end{pmatrix} \).

Solución.

El polinomio característico es \(p(\lambda) = \lambda^2 - 1 \) cuyos vectores propios son: para \(\lambda_1 = -1 \),

\[v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

y para \(\lambda_1 = 1 \),

\[v_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}. \]

Luego, la matriz fundamental es \(\Phi(t) = \begin{pmatrix} e^{-t} & 3e^t \\ e^{-t} & e^t \end{pmatrix} \), y su inversa:

\[\Phi^{-1}(t) = -\frac{1}{2} \begin{pmatrix} e^t & -3e^t \\ -e^{-t} & e^{-t} \end{pmatrix}. \]
Entonces,

\[\Phi^{-1}(t) F(t) = -\frac{1}{2} \begin{pmatrix} e^t & -3e^t \\ -e^{-t} & e^{-t} \end{pmatrix} \begin{pmatrix} t \\ 5 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} te^t - 15e^t \\ 5e^{-t} - te^{-t} \end{pmatrix}. \]

Finalmente, la solución general es

\[X(t) = \Phi(t) C + \Phi(t) \int \Phi^{-1}(t) f(t) \, dt \]

\[= \begin{pmatrix} e^{-t} & 3e^t \\ e^{-t} & e^t \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} e^{-t} & 3e^t \\ e^{-t} & e^t \end{pmatrix} \int \begin{pmatrix} te^t - 15e^t \\ 5e^{-t} - te^{-t} \end{pmatrix} \, dt \]

\[= \begin{pmatrix} 3C_2 e^t + C_1 e^{-t} \\ C_2 e^t + C_1 e^{-t} \end{pmatrix} - \frac{1}{2} \begin{pmatrix} e^{-t} & 3e^t \\ e^{-t} & e^t \end{pmatrix} \begin{pmatrix} e^t (t-16) \\ e^{-t}(t-4) \end{pmatrix} \]

\[= \begin{pmatrix} 3C_2 e^t + C_1 e^{-t} - 2t + 14 \\ C_2 e^t + C_1 e^{-t} - t + 10 \end{pmatrix}. \]

4.7 Sistemas de ecuaciones diferenciales no lineales

4.7.1 Estabilidad de sistemas lineales

Dado el sistema lineal

\[
\begin{align*}
\frac{dx}{dt} &= ax + by \\
\frac{dy}{dt} &= cx + dy
\end{align*}
\] (4.29)

Se observa que el sistema (4.29) se puede escribir en la forma matricial

\[\frac{dX}{dt} = X' = AX, \]

donde \(X = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \) y \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). Además, si \(|A| \neq 0 \), resolvemos el sistema

\[
\begin{align*}
ax + by &= 0 \\
\Rightarrow x &= 0, y = 0 \\
(cx + dy) &= 0
\end{align*}
\]

y diremos que el único punto crítico de (4.29) es \((0,0) \). Dicho de otra manera, si \(A \) es no singular, es decir \(|A| \neq 0 \), por lo que \(X = 0 \) es el único punto crítico del sistema.
Diremos también que en estos puntos \(\frac{dX}{dt} = 0 \), corresponden a soluciones constantes o soluciones de equilibrio de (4.29).

Recordemos que una solución de la (4.29) es una función vectorial \(X = \Phi(t) = \begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix} \) que satisface el sistema. Esta función puede concebirse como una representación paramétrica de una curva \(C : \{ (x(t), y(t)) \mid t \in [a, b] \} \) en el plano \(XY \) y el conjunto de curvas o trayectorias se denomina el retrato fase.

Clasificación del punto crítico \((0, 0)\)

Los valores propios de \(A \) son

\[
p(\lambda) = |A - \lambda I| = 0 \iff (a - \lambda)(d - \lambda) - bc \iff \lambda^2 - (a + d)\lambda + (ad - bc) = 0,
\]

donde \(p(\lambda) = \lambda^2 - \text{tr}(A)\lambda + |A| = 0 \), cuya solución de la ecuación cuadrática es

\[
\lambda = \frac{\text{tr}(A) \pm \sqrt{(\text{tr}(A))^2 - 4|A|}}{2},
\]

donde \(\text{tr}(A) = a + d = \text{traza de } A \) y \(|A| = ad - bc \) es el determinante de \(A \). Por lo que tenemos la siguiente clasificación del punto crítico \((0, 0)\).

Definición 4.14

El punto crítico \((0, 0)\) es un:

1. punto silla si \(|A| < 0\),
2. nodo estable si \(|A| > 0\), \((\text{tr}(A))^2 - 4|A| \geq 0\), \(y \ \text{tr}(A) < 0\),
3. nodo inestable si \(|A| > 0\), \((\text{tr}(A))^2 - 4|A| \geq 0\) \(y \ \text{tr}(A) > 0\),
4. foco estable si \(|A| > 0\), \((\text{tr}(A))^2 - 4|A| < 0\) \(y \ \text{tr}(A) < 0\),
5. foco inestable si \(|A| > 0\), \((\text{tr}(A))^2 - 4|A| < 0\) \(y \ \text{tr}(A) > 0\),
6. centro si \(|A| > 0\) \(y \ \text{tr}(A) = 0\).

Diremos que el sistema lineal (4.29), con el único punto crítico \((0, 0)\) es un sumidero o una fuente, si las soluciones se acercan (o se separan) del punto crítico de dos formas, o bien bajo la forma de nodo, o bien bajo la forma de foco.

Otra forma equivalente de clasificar el punto de equilibrio \((0, 0)\) es de la siguiente forma:

<table>
<thead>
<tr>
<th>Valores propios</th>
<th>Tipo de punto crítico ((0, 0))</th>
<th>Estabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1 > \lambda_2 > 0)</td>
<td>nodo</td>
<td>inestable</td>
</tr>
<tr>
<td>(\lambda_1 < \lambda_2 < 0)</td>
<td>nodo</td>
<td>asintóticamente estable</td>
</tr>
<tr>
<td>(\lambda_2 < 0 < \lambda_1)</td>
<td>punto silla</td>
<td>inestable</td>
</tr>
<tr>
<td>(\lambda = \pm bi)</td>
<td>centro</td>
<td>asintóticamente estable</td>
</tr>
<tr>
<td>(\lambda = a \pm bi, a < 0)</td>
<td>punto espiral</td>
<td>asintóticamente estable</td>
</tr>
<tr>
<td>(\lambda = a \pm bi, a > 0)</td>
<td>punto espiral</td>
<td>inestable</td>
</tr>
</tbody>
</table>
Además, si \(\lambda_1 = \lambda_2 > 0 \), diremos que (0,0) es un nodo impropio inestable y si \(\lambda_1 = \lambda_2 < 0 \), diremos que (0,0) es un nodo impropio estable.

Estabilidad del sistema (4.29)

Hemos visto como una solución puede interpretarse como la trayectoria de una partícula que al inicio se coloca en la posición \(X(0) = X_0 \). Si \(X_0 = X^* = (x^*, y^*) \) es un punto crítico entonces la partícula permanece estacionaria. Pero, ¿qué ocurre si situamos a la partícula cerca del punto crítico? Supongamos que \(X^* \) es un punto crítico de sistema autónomo (4.29) y que \(X = X(t) \) es una solución que satisface \(X(0) = X_0 \). Nos interesa saber cómo se comporta la partícula cuando \(X_0 \) está cerca de \(X^* \), para esto tenemos los siguientes casos:

(i) Si la partícula se aproxima hacia el punto crítico, diremos que el punto crítico es localmente estable. En este caso se tiene

\[
l\lim_{t \to -\infty} X(t) = X^*.\]

(ii) Si la partícula no se aproxima hacia el punto crítico, diremos que el punto crítico es inestable.

A continuación, especificamos los casos mencionados para el sistema (4.29).

Caso I: Valores propios reales y distintos

Vimos que la solución general es

\[
X(t) = c_1 v_1 e^{\lambda_1 t} + c_1 v_2 e^{\lambda_2 t}.
\]

(a) **Ambos valores propios son negativos: nodo estable o atractor.**

Como \(\lambda_1 < 0 \) y \(\lambda_2 < 0 \) entonces claramente \(\lim_{t \to -\infty} X(t) = 0 \).

![Figura 4.1: Nodo estable.](image)

(b) **Ambos valores propios positivos: nodo inestable o repulsor**

El análisis es similar. Bajo esta condición \(|X(t)|\) queda sin cota cuando \(t \to +\infty \), es decir, \(X(t) \) diverge cuando \(t \to +\infty \).

![Figura 4.2: Nodo inestable.](image)
(c) Valores propios con signos opuestos \((\lambda_2 < 0 < \lambda_1)\): Punto silla.

\[X(t) = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t} = e^{\lambda_1 t} \left(c_1 v_1 + c_2 v_2 e^{(\lambda_2 - \lambda_1)t} \right) \]

El análisis es similar al caso anterior. Cuando \(c_1 = 0 \), \(X(t) \) se aproximará 0 a lo largo de la recta determinada por el vector propio \(v_2 \) cuando \(t \to \infty \). Si la solución no está sobre esa recta, la marcada por \(v_1 \) hace de asíntota para la solución. A pesar de que algunas soluciones se acercan al origen, el punto crítico es inestable.

Figura 4.3: Punto silla.

Caso II: Valor propio real repetido

En este caso, si \(A \) tiene un único valor propio \(\lambda = \lambda_1 = \lambda_2 \neq 0 \), el carácter del punto crítico \((0,0)\) depende de si la matriz de coeficientes \(A \) tiene dos vectores propios linealmente independientes \(v_1 \) y \(v_2 \) o no.

(a) Si \(A \) tiene dos vectores propios linealmente independientes: la solución general es

\[X(t) = c_1 v_1 e^{\lambda t} + c_2 v_2 e^{\lambda t} = (c_1 v_1 + c_2 v_2) e^{\lambda t} \]

Si \(\lambda < 0 \), entonces \(X(t) \) tiende a 0 a lo largo de la recta determinada por \(c_1 v_1 + c_2 v_2 = 0 \) y el punto crítico \((0,0)\) se denomina nodo estable degenerado (ver figura 4.4) y cuando \(\lambda > 0 \) se llama nodo inestable degenerado.

Figura 4.4: Nodo estable degenerado.
(b) Si \(A \) tiene un solo vector propio linealmente independiente: Si el valor propio múltiple \(\lambda \neq 0 \) tiene sólo un vector propio \(v_1 \) entonces existe, como hemos visto, un vector generalizado \(v_2 \) tal que

\[(A - \lambda I) v_2 = v_1\]

y el sistema \(X' = AX \) tiene dos soluciones linealmente independientes

\[X_1(t) = v_1 e^{\lambda t} \quad y \quad X_2(t) = (v_1 t + v_2) e^{\lambda t}.\]

La solución general es

\[X(t) = c_1 v_1 e^{\lambda t} + c_2 \left(v_1 t e^{\lambda t} + v_2 e^{\lambda t} \right) = te^{\lambda t} \left(c_1 v_1 + c_2 \frac{v_1}{t} + c_2 \frac{v_2}{t} \right).\]

Si \(\lambda < 0 \), entonces \(X(t) \to 0 \) cuando \(t \to \pm \infty \), en una dirección determinada por el vector \(v_1 \); el punto crítico \((0, 0)\) se llama nodo impropio estable degenerado y si \(\lambda > 0 \) el punto crítico \((0, 0)\) se llama nodo impropio inestable degenerado.

Mostramos dos gráficos correspondientes a \(\lambda < 0 \) y \(\lambda > 0 \) respectivamente:

![Figura 4.5: Nodos impropios: estable degenerado e inestable degenerado.](image)

Caso III: Valores Propios Complejos

(a) Raíces imaginarias puras: Si \(\text{tr}^2 - 4 |A| < 0 \) y \(\tau = \text{tr} (A) = 0 \), el punto crítico \((0, 0)\) se llama centro.

![Figura 4.6: Centro](image)

(b) Parte real no nula: Si \(\text{tr}^2 - 4 |A| < 0 \) y \(\tau = \text{tr} (A) \neq 0 \). Si la parte real es mayor que 0, el punto crítico es inestable y la gráfica es una espiral que se aleja del punto crítico. Si la parte real es negativa, diremos que el punto crítico es estable y la curva solución es una espiral que se aproxima al punto crítico. \(\lambda = a \pm bi, \ a < 0 \).
Ejemplo 4.40

Resolver \[\begin{cases} \frac{dx}{dt} = x \\ \frac{dy}{dt} = -y \end{cases} \]

Solución.

La matriz asociada es \(A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) los valores propios de \(A \) son \(\lambda_1 = 1 > 0 \) y \(\lambda_2 = -1 < 0 \), en este caso diremos que (0, 0) es un punto silla. Por otro lado

\[\frac{dx}{dy} = -\frac{x}{y} \Leftrightarrow \int \frac{dx}{x} = -\int \frac{dy}{y} \Leftrightarrow \ln x = -\ln y + \ln C = \ln \left(\frac{C}{y} \right) \Leftrightarrow y = \frac{C}{x} \]

de donde obtenemos una familia de hipérbolas equiláteras.
Además, sea $F : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ definida por $F(x, y) = (x, -y)$, podemos ver en el siguiente gráfico el comportamiento del campo vectorial F.

Figura 4.9: Campo vectorial $F(x, y) = (x, -y)$.

Ejemplo 4.41

Resolver

\[
\begin{align*}
\frac{dx}{dt} &= x \\
\frac{dy}{dt} &= 2y
\end{align*}
\]

Solución.

La matriz asociada es $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ los valores propios de A son $\lambda_1 = 1 > 0$ y $\lambda_2 = 2 > 0$, en este caso diremos que $(0, 0)$ es un nodo inestable. Por otro lado,

\[
\frac{dx}{dy} = \frac{x}{2y} \Leftrightarrow \int \frac{dx}{x} = \frac{1}{2} \int \frac{dy}{y} \Leftrightarrow \ln x = \frac{1}{2} \ln y + \ln C \Leftrightarrow x = C y^{1/2} \Leftrightarrow y = K x^2.
\]

Mostramos algunas curvas solución para $K = -5, -2, 1$ y 3.

Figura 4.10: Curvas solución.
Ejemplo 4.42

Resolver \[\begin{align*}
\frac{dx}{dt} &= -2y \\
\frac{dy}{dt} &= \frac{1}{2}x
\end{align*} \]

Solución.

La matriz asociada es \[A = \begin{pmatrix} 0 & -2 \\
1/2 & 0 \end{pmatrix} \], y los valores propios de \(A \) son

\[
p(\lambda) = \begin{vmatrix} 0 - \lambda & -2 \\
1/2 & 0 - \lambda \end{vmatrix} = \lambda^2 + 1 = 0 \Rightarrow \lambda = \pm i.
\]

En este caso, diremos que \((0, 0)\) es un centro. Por otro lado,

\[
\frac{dx}{dy} = -\frac{2y}{\frac{1}{2}x} \Rightarrow \int x\,dx = -4\int y\,dy \Leftrightarrow \frac{x^2}{2} = -2y^2 + C
\]

Así, obtenemos una familia de elipses

\[
\frac{x^2}{4} + y^2 = K.
\]

Por lo que tenemos el siguiente campo vectorial del sistema

Figura 4.11: Campo vectorial.
Ejemplo 4.43

Resolver
\[
\begin{align*}
\frac{dx}{dt} &= y \\
\frac{dy}{dt} &= 2x + y
\end{align*}
\]

Solución.

La matriz asociada es
\[
A = \begin{pmatrix}
0 & 1 \\
2 & 1
\end{pmatrix}
\]
cuyo polinomio característico es
\[
p(\lambda) = \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2) = 0,
\]
por lo que la solución es
\[
X(t) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{2t}
\]

Por otro lado, otra forma de resolver el sistema es haciendo
\[
x' = \frac{dx}{dt}
\]
entonces
\[
x'' = y' = 2x + y = 2x + x' \Rightarrow x'' - x' - 2x = 0,
\]
entonces la ecuación auxiliar asociada es
\[
r^2 - r - 2 = (r - 2)(r + 1) = 0.
\]

Luego, la solución es \(x(t) = C_1 e^{2t} + C_2 e^{-t}\). Además, \(y(t) = \frac{dx}{dt} = 2C_1 e^{2t} - C_2 e^{-t}\).

En el siguiente gráfico mostramos el campo vectorial del sistema

Figura 4.12: Campo vectorial.
Ejemplo 4.44

Determine la estabilidad del sistema

\[
\begin{align*}
 x' &= -x + y \\
 y' &= cx - y
\end{align*}
\]

para el caso en que \(c = \frac{1}{4}, 4, 0 \) y \(-9\).

Solución.

Como la matriz de coeficientes es

\[
A = \begin{pmatrix}
 -1 & 1 \\
 c & -1
\end{pmatrix}
\]

entonces tenemos \(\text{tr}A = -2 \), y \(\Delta = 1 - c \). Así los valores propios son \(\lambda = -1 \pm \sqrt{c} \).

- Si \(c = \frac{1}{4} \), \(\lambda = -1/2 < 0 \) y \(\lambda = -3/2 < 0 \), así (0, 0) es un nodo convergente.
- Si \(c = 4 \), \(\lambda = 1 > 0 \) y \(\lambda = 3 > 0 \), entonces (0, 0) es un nodo divergente.
- Si \(c = 0 \), \(\lambda = -1 \), luego, (0, 0) es un nodo estable degenerado.
- Si \(c = -9 \), \(\lambda = -1 \pm 3i \). Luego, (0, 0) es un centro.

Ejemplo 4.45

Clasificar el punto crítico (0, 0) de cada sistema \(X' = AX \) como un nodo estable, nodo inestable o un punto silla.

(a) \[
A = \begin{pmatrix}
 2 & 3 \\
 2 & 1
\end{pmatrix}
\]

(b) \[
A = \begin{pmatrix}
 -10 & 6 \\
 15 & -19
\end{pmatrix}
\]

Solución.

(a) Puesto que los valores propios son: \(\lambda = 4 > 0 \), \(\lambda = -1 < 0 \), luego (0, 0) es un punto silla. Además, los vectores propios correspondientes son respectivamente: \(v_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \) y \(v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \).

Si \(X(0) \) está sobre la recta \(y = -x \), entonces \(X(t) \) tiende a 0. Para cualquier otra condición inicial, \(X(t) \) queda sin cota en las direcciones determinadas por \(v_1 \).

(b) Puesto que los valores propios son \(\lambda = -4 < 0 \), \(\lambda = -25 < 0 \), entonces (0, 0) es un nodo estable. Además, los vectores propios correspondientes son

\[
\begin{align*}
 v_1 &= \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ -5 \end{pmatrix}
\end{align*}
\]
Ejemplo 4.46

Determine la condición del parámetro real \(\mu \) tal que \((0, 0)\) sea un punto espiral estable del sistema lineal

\[
\begin{cases}
x' = y \\
y' = -x + \mu y
\end{cases}
\]

Solución.

La matriz asociada del sistema lineal es

\[
A = \begin{pmatrix} 0 & 1 \\ -1 & \mu \end{pmatrix},
\]

cuyo polinomio característico es

\[
p(\lambda) = \begin{vmatrix} 0 - \lambda & 1 \\ -1 & \mu - \lambda \end{vmatrix} = \lambda^2 - \mu \lambda + 1
\]

cuyas raíces son \(\lambda = \frac{\mu \pm \sqrt{\mu^2 - 4}}{2} \), luego \(\mu < 0 \) y \(\mu^2 - 4 \) de donde \(\mu \in]0, 2[\).

En la figura 4.13 se muestra un resumen de los resultados de esta sección. La naturaleza geométrica general de las soluciones puede determinarse calculando la traza y el determinante de la matriz \(A \).

Figura 4.13: Resumen geométrico de los casos I, II y III.
4.7.2 Sistemas no lineales

Una gran variedad de fenómenos naturales son modelados por dos sistemas de ecuaciones diferenciales de la forma

\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \\
\frac{dy}{dt} &= g(x, y)
\end{align*}
\]

(4.30)

donde \(f \) y \(g \) son funciones no lineales a la vez.

Usualmente pensamos en las variables \(x \) y \(y \) como variables de posición en el plano \(xy \), y de \(t \) como la variable temporal. La ausencia de la variable \(t \) en el lado derecho de (4.30) hace que el sistema sea fácil de analizar y su solución fácil de visualizar, dicho sistema se denomina sistema autónomo.

Generalmente asumimos que las funciones \(f \) y \(g \) son continuamente diferenciables en alguna región \(\mathcal{R} \) del plano \(xy \). Luego, de acuerdo al teorema de existencia y unicidad, dada \(t_0 \) y un puto \(\{x_0, y_0\} \) de \(\mathcal{R} \), existe una única solución \(x = x(t), \ y = y(t) \) de (4.30) que es definida sobre algún intervalo abierto \((a, b) \) conteniendo a \(t_0 \) y satisfaciendo las condiciones iniciales

\[
x(t_0) = x_0, \quad y(t_0) = y_0.
\]

Las ecuaciones \(x = x(t), \ y = y(t) \) describe una curva solución en el plano fase. Cualquier curva solución de este tipo es llamada una trayectoria del sistema (4.30), y precisamente una trayectoria pasa por cada punto \(\{x_0, y_0\} \) de la región \(\mathcal{R} \).

\[\textbf{Definición 4.15}\]

Un punto de equilibrio del sistema (4.30) es un punto \(\{x^*, y^*\} \) tal que

\[
f(x^*, y^*) = 0 = g(x^*, y^*).
\]

Si \(\{x^*, y^*\} \) es un punto de equilibrio del sistema, entonces las funciones constantes

\[
x(t) \equiv x^*, \quad y(t) \equiv y^*
\]

tiene derivadas \(x'(t) \equiv 0 \) y \(y'(t) \equiv 0 \), y por lo tanto automáticamente satisface las ecuaciones en (4.30). Tales soluciones constantes es llamada una solución de equilibrio del sistema en mención.

\[\textbf{Nota}:\] a un punto crítico también se le denomina punto: crítico, fijo, de reposo, singular.

\[\textbf{Retrato Fase}\]

Si el dato inicial \(\{x_0, y_0\} \) no es un punto crítico, entonces la correspondiente trayectoria es una curva en el plano \(xy \) a lo largo el cual el punto \(\{x(t), y(t)\} \) se mueve cuando \(t \) aumenta. Podemos exponer cualitativamente el comportamiento de soluciones del sistema autónomo en (4.30) mediante la construcción de un plano que muestre sus puntos críticos juntamente con una colección de soluciones típicas de curvas o trayectorias en el plano \(xy \). Tal plano es llamado un retrato fase, como ya mencionamos antes, porque ella ilustra las fases o estados \(xy \) del sistema, e indica como ellos cambian con el tiempo.

\[\textbf{Interpretación del sistema (4.30) como campo vectorial}\]

Cuando la variable \(t \) se interpreta como el tiempo, decimos que un sistema de ecuaciones diferenciales es un sistema dinámico y su solución \(X(t) = (x(t), y(t)) \) se denomina estado o respuesta del sistema en el tiempo \(t \). De modo que un sistema dinámico es autónomo cuando la velocidad \(X'(t) \)

solo depende del estado actual del sistema \(X(t) \) y suele llamarse a la solución: trayectoria u órbita. El sistema autónomo (4.30), se puede escribir como un vector \(V(x, y) = (f(x, y), g(x, y)) \) que define un campo vectorial en una región del plano. \(V(x, y) \) puede interpretarse como la velocidad de una
corriente en la posición \((x, y)\); y una solución puede interpretarse como la trayectoria de una partícula arrastrada por esa corriente.

Figura 4.14: Campo vectorial del flujo de un fluido alrededor de un cilindro.

Tipos de soluciones

Si \(f(x, y), g(x, y)\) y sus derivadas parciales de primer orden son continuas en una región \(\mathbb{R}\) del plano \(xy\), entonces una solución del sistema que satisface \(X(0) = X_0\) es única y se tiene uno de los siguientes tres tipos básicos:

1. **Solución constante**: \(X(t) = X_0\) para todo \(t\). Una solución constante se llama punto crítico o estacionario. Cuando una partícula se coloca en un punto crítico \(X_0\) y permanece allí indefinidamente, por eso una solución constante también se denomina solución de equilibrio. Observamos que \(X'(t) = 0\) es una solución del sistema de ecuaciones algebraicas:
 \[f(x, y) = 0 = g(x, y). \]

2. Una solución \(X(t) = (x(t), y(t))\) que define un **arco**: una curva plana que no se cruza a sí misma.

3. **Solución periódica**: Es la que satisface \(X(t + p) = X(t)\), donde \(p\) es el período de la solución. Una partícula colocada en la órbita en el punto \(X(0)\), por ejemplo, viajará por la curva hasta regresar al punto de partida en \(p\) unidades de tiempo.

4.7.3 Linealización y estabilidad local

Dado el el sistema no lineal (4.30), entonces linealizamos \(f\) y \(g\) utilizando el polinomio de Taylor alrededor de cada punto de equilibrio; es decir, si \((x^*, y^*)\) es un punto de equilibrio de (4.30) entonces

\[
\frac{dx}{dt} = f(x, y) = f(x^*, y^*) + \frac{\partial f}{\partial x}(x^*, y^*)(x-x^*) + \frac{\partial f}{\partial y}(x^*, y^*)(y-y^*)
\]
Sistemas de ecuaciones diferenciales no lineales

\[\frac{dy}{dt} = g(x, y) \approx g(x^*, y^*) + \frac{\partial g}{\partial x}(x^*, y^*)(x - x^*) + \frac{\partial g}{\partial y}(x^*, y^*)(y - y^*) \]

Si hacemos \(a = \frac{\partial f}{\partial x}(x^*, y^*) \), \(b = \frac{\partial f}{\partial y}(x^*, y^*) \), \(c = \frac{\partial g}{\partial x}(x^*, y^*) \) y \(d = \frac{\partial g}{\partial y}(x^*, y^*) \).

Entonces el sistema (4.30), se convierte en

\[
\begin{align*}
\frac{dx}{dt} &= a(x - x^*) + b(y - y^*) \\
\frac{dy}{dt} &= a(x - x^*) + d(y - y^*)
\end{align*}
\]

Finalmente, haciendo el cambio de variable (traslación) \(u = x - x^* \) y \(v = y - y^* \) obtenemos el sistema linealizado

\[
\begin{align*}
\frac{du}{dt} &= au + bv \\
\frac{dv}{dt} &= au + dv
\end{align*}
\]

en el plano UV.

Ejemplo 4.47

Encuentre los puntos críticos, clasifique y verifique sus conclusiones por medio del retrato fase del sistema

\[
\begin{align*}
\frac{dx}{dt} &= x - y = f(x, y) \\
\frac{dy}{dt} &= x^2 - y = g(x, y)
\end{align*}
\]

Solución.

Puntos críticos:

\[
\begin{align*}
f(x, y) &= x - y = 0 \\
g(x, y) &= x^2 - y = 0
\end{align*}
\]

\(\begin{align*} y &= x \\
y &= x^2
\end{align*} \) \(\Rightarrow (0, 0), (1, 1) \)

El Jacobiano de \(F(x, y) = (f(x, y), g(x, y)) \)

\[
J_F(x, y) = \begin{pmatrix}
\frac{df}{dx}(x, y) & \frac{df}{dy}(x, y) \\
\frac{dg}{dx}(x, y) & \frac{dg}{dy}(x, y)
\end{pmatrix} = \begin{pmatrix}
1 & -1 \\
2x & -1
\end{pmatrix}
\]

i) Si \((x^*, y^*) = (0, 0)\) entonces \(A = J_F(0, 0) = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \), los valores propios de \(A \) son \(\lambda_1 = 1 > 0 \)

\(y \lambda_2 = -1 < 0 \) por lo que \((0, 0)\) es un punto silla.

ii) Si \((x^*, y^*) = (1, 1)\) entonces \(B = J_F(1, 1) = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \) y sus valores propios son

\[
p(\lambda) = (1 - \lambda)(-1 - \lambda) + 2 = \lambda^2 + 1 = 0 \Rightarrow \lambda = \pm i
\]

por lo que \((1, 1)\) es un centro.
Ejemplo 4.48

Escriba la ecuación diferencial no lineal de segundo orden: \(x'' + 4x - x^3 = 0 \) en forma de un sistema autónomo plano y clasifique sus puntos críticos.

Solución.

Sea \(y = x' \) entonces \(y' = x'' = x^3 - 4x \). Entonces tenemos el sistema

\[
\begin{cases}
\frac{dx}{dt} = y \\
\frac{dy}{dt} = x^3 - 4x
\end{cases}
\]

Puntos críticos:

\[
\begin{cases}
f(x, y) = y = 0 \\
g(x, y) = x^3 - 4x = 0
\end{cases} \quad \Rightarrow \begin{cases}
y = 0 \\
x(x^2 - 4) = 0
\end{cases} \quad \Rightarrow (0, 0), (2, 0), (-2, 0)
\]

El Jacobiano de \(F(x, y) = (f(x, y), g(x, y)) \)

\[
J_F(x, y) = \begin{pmatrix}
\frac{df}{dx}(x, y) & \frac{df}{dy}(x, y) \\
\frac{dg}{dx}(x, y) & \frac{dg}{dy}(x, y)
\end{pmatrix}
= \begin{pmatrix}
0 & 1 \\
3x^2 - 4 & 0
\end{pmatrix}
\]

i) Si \((x^*, y^*) = (0, 0) \) entonces \(A = J_F(0, 0) = \begin{pmatrix}
0 & 1 \\
-4 & 0
\end{pmatrix} \)

los valores propios de \(A \) son \(\lambda = \pm 2i \)

por lo que \((0, 0) \) es un centro.
ii) Si \((x^*, y^*) = (2, 0) \) entonces \(B = J_F(2, 0) = \begin{pmatrix} 0 & 1 \\ 8 & 0 \end{pmatrix} \) los valores propios de \(B \) son

\[
p(\lambda) = |B - \lambda I| = \lambda^2 - 8 \Rightarrow \lambda = \pm 2\sqrt{2}
\]

por lo que \((2, 0) \) es un punto silla.

iii) Si \((x^*, y^*) = (-2, 0) \) entonces \(C = J_F(2, 0) = \begin{pmatrix} 0 & 1 \\ 8 & 0 \end{pmatrix} \) los valores propios de \(C \) son

\[
p(\lambda) = |C - \lambda I| = \lambda^2 - 8 \Rightarrow \lambda = \pm 2\sqrt{2}
\]
Ejemplo 4.49

Dado el sistema poblacional predador - presa

\[
\begin{align*}
\frac{dx}{dt} &= ax - pxy = x(a - py) \\
\frac{dy}{dt} &= -by + qxy = y(-b + qx)
\end{align*}
\]

donde las constantes \(a, b, p, \) y \(q \) son positivas. Clasifique los puntos de equilibrios y grafique el campos vectorial del sistema.

Solución.

Usando la regla de la cadena

\[
\frac{dx}{dt} = \frac{dx}{dy} \cdot \frac{dy}{dt} = \frac{x(a - py)}{y(-b + qx)}
\]

de donde obtenemos una EDO de variable separable

\[
\frac{(-b + qx)dx}{x} = \frac{(a - py)dy}{y} \implies \frac{-b + qx}{x} \cdot dx = \frac{a - py}{y} \cdot dy
\]

integrando obtenemos

\[
-b \ln x + qx = a \ln y - py + K.
\]

Luego, encontrando los puntos críticos:

\[
\begin{align*}
&f(x,y) = x(a - py) = 0 \quad \implies \quad x = 0 \quad \text{o} \quad y = \frac{a}{p} \\
g(x,y) = y(-b + qx) = 0 \quad \implies \quad y = 0 \quad \text{o} \quad x = \frac{b}{q}
\end{align*}
\]

El Jacobiano de \(F(x,y) = (f(x,y), g(x,y)) \)

\[
J_F(x,y) = \begin{pmatrix}
\frac{df}{dx}(x,y) & \frac{df}{dy}(x,y) \\
\frac{dg}{dx}(x,y) & \frac{dg}{dy}(x,y)
\end{pmatrix} = \begin{pmatrix}
a - py & -px \\
qy & -b + qx
\end{pmatrix}
\]

i) Si \((x^*, y^*) = (0,0) \) entonces \(A = J_F(0,0) = \begin{pmatrix} a & 0 \\
0 & -b \end{pmatrix} \) los valores propios de \(A \) son \(\lambda = a > 0 \) y \(\lambda = -b < 0 \) por lo que \((0,0) \) es un punto silla.

ii) Si \((x^*, y^*) = \left(\frac{b}{q}, \frac{a}{p}\right) \) entonces \(B = J_F(\frac{b}{q}, \frac{a}{p}) = \begin{pmatrix} 0 & -\frac{bp}{q} \\
\frac{aq}{p} & 0 \end{pmatrix} \) los valores propios de \(B \) son

\[
p(\lambda) = |B - \lambda I| = \lambda^2 + ab = 0
\]

de donde \(\lambda = \pm \sqrt{ab}i \), por lo que \(\left(\frac{b}{q}, \frac{a}{p}\right) \) es un centro.

Graficamos el campo de vectores para \(a = 30, p = 4, b = 10 \) y \(q = 2 \).
Ejemplo 4.50

Dado el siguiente modelo de crecimiento de las poblaciones logística y naturalmente en competencia

\[
\begin{align*}
\frac{dx}{dt} &= x \left(3 - x - \frac{1}{2}y\right) \\
\frac{dy}{dt} &= y \left(4 - 2x\right)
\end{align*}
\]

Clasifique los puntos de equilibrios.

Solución.

Puntos críticos:

\[
\begin{align*}
f(x, y) &= x \left(3 - x - \frac{1}{2}y\right) = 0 \\
g(x, y) &= y \left(4 - 2x\right) = 0
\end{align*}
\]

de donde obtenemos los puntos de equilibrios \((0, 0)\); \((3, 0)\); \((2, 2)\).

La matriz Jacobiana es:

\[
J(x, y) = \begin{pmatrix}
3 - 2x & -\frac{1}{2}y \\
-\frac{1}{2}x & -2y \\
\end{pmatrix}
\]

y enseguida, analizamos cada punto de equilibrio:

i) Si \(A = J(0, 0) = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}\) sus valores propios son: \(\lambda_1 = 3 > 0, \lambda_2 = 4 > 0\), tenemos nodo divergente en \((0, 0)\).

ii) Si \(B = J(3, 0) = \begin{pmatrix} -3 & -3/2 \\ 0 & -2 \end{pmatrix}\) sus valores propios son: \(\lambda_1 = -3 < 0, \lambda_2 = -2 < 0\), tenemos
nodo convergente en (3, 0).

iii) Si \(C = J(2,2) = \begin{pmatrix} -2 & -1 \\ -4 & 0 \end{pmatrix} \), sus valores propios son: \(\lambda_1 = \sqrt{5} - 1 > 0 \), \(\lambda_2 = -\sqrt{5} - 1 < 0 \), entonces (2,2) es punto silla.

Ejemplo 4.51

Dado el siguiente modelo poblacional

\[
\begin{align*}
\frac{dx}{dt} &= x(3 - x - 2y) \\
\frac{dy}{dt} &= y(2 - x - y)
\end{align*}
\]

Clasifique los puntos de equilibrios y esboce el campo vectorial del sistema.

Solución.

Hallamos los puntos de equilibrios

\[
\begin{align*}
x (3 - x - 2y) &= 0 \\
y (2 - x - y) &= 0
\end{align*}
\]

\[
\Rightarrow \begin{cases}
x = 0, \ x + 2y = 3 \\
y = 0, \ x + y = 2
\end{cases}
\]

de donde obtenemos: (1, 1), (0, 2), (0, 0), (3, 0).

La matriz Jacobiana de \(F \) es \(J(x,y) = \begin{pmatrix} 3 - 2x - 2y & -2x \\ -y & 2 - x - 2y \end{pmatrix} \), luego analizamos en cada punto de equilibrio.
i.) Si $A = J(0,0) = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$, entonces $\lambda_1 = 3 > 0, \lambda_2 = 2 > 0$, así $(0,0)$ es un nodo divergente.

ii.) Si $B = J(0,2) = \begin{pmatrix} -1 & 0 \\ -2 & -2 \end{pmatrix}$, sus valores propios son: $\lambda_1 = -1 < 0, \lambda_2 = -2 < 0$, luego $(0,2)$ es nodo convergente.

iii.) Si $C = J(3,0) = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix}$, sus valores propios son: $\lambda_1 = -3 < 0, \lambda_2 = -1 < 0$, entonces $(3,0)$ es nodo convergente.

iv.) Si $D = J(1,1) = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}$, sus valores propios son: $\lambda_1 = \sqrt{2} - 1 > 0, \lambda_2 = -\sqrt{2} - 1 < 0$; así, $(1,1)$ es un punto silla.

Figura 4.19: Campo vectorial.
4.8 Problemas Propuestos

1. Resolver $X' = AX$, donde

 a) $A = \begin{pmatrix} 1 & -3 \\ 3 & 7 \end{pmatrix}$

 b) $A = \begin{pmatrix} -3 & -4 \\ 2 & 1 \end{pmatrix}$

 c) $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$

 d) $A = \begin{pmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0 \end{pmatrix}$

2. Resolver el problema de valor inicial $\begin{cases} X' = AX \\ X(0) = X_0 \end{cases}$, donde

 a) $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $X_0 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

 b) $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $X_0 = \begin{pmatrix} -1 \\ 4 \\ 0 \end{pmatrix}$

 c) $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & -2 & -3 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $X_0 = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$

3. Resolver la ecuación del oscilador armónico $x'' + x = 0$, usando un sistema de ecuaciones diferenciales lineales.

4. Resolver $\begin{cases} x' = y \\ y' = 2x + y \end{cases}$, transformando dicho sistema en una EDO de segundo orden.
5. Modelo de cooperación de especies (símbiosis). Considere el modelo simbiótico gobernado por

\[
\begin{align*}
\frac{dx}{dt} &= -\frac{1}{2}x + y \\
\frac{dy}{dt} &= \frac{1}{4}x - \frac{1}{2}y \\
x(0) &= 200 \quad y(0) = 500
\end{align*}
\]

\(a\) Determine la población de cada especie para \(t > 0\).

\(b\) Calcule \(\lim_{t \to +\infty} X(t)\), donde \(X = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}\). Interprete su respuesta.

6. Resolver el problema de valor inicial

\[
\begin{align*}
\frac{dx}{dt} &= 3x - 2y \\
\frac{dy}{dt} &= -x + 3y - 2z \\
\frac{dz}{dt} &= -y + 3z \\
x(0) &= 0, \quad y(0) = 2 \quad z(0) = 6
\end{align*}
\]

7. Considere el modelo depredador - presa, gobernado por

\[
\begin{align*}
x'_1(t) &= x_1(t) + 3x_2(t) \\
x'_2(t) &= 3x_1(t) + x_2(t) \\
x_1(0) &= 2, \quad x_2(0) = 4
\end{align*}
\]

\(a\) Determine la población de cada especie para \(t > 0\).

\(b\) En qué tiempo aproximado la especie presa es eliminada.

8. Dos tanques que contienen cada uno 100 litros de líquido se encuentran interconectados por medio de dos tubos. El líquido fluye del tanque \(A\) hacia el tanque \(B\) a razón de 4 lit/min, y de \(B\) hacia \(A\) a razón de 1 lit/min. El líquido contenido en el interior de cada tanque se mantiene se mantiene bien agitado. Hacia el tanque \(A\) fluye agua pura a razón de 3 lit/min, y la solución fluye hacia afuera del tanque \(B\) a 3 lit/min. Si inicialmente el tanque \(A\) contiene 10 kg de sal y el tanque \(B\) no contiene sal (sólomente agua).

Exprése el modelo matemático para este problema en el instante \(t \geq 0\).

9. Resolver \(X' = AX + f(t)\) donde

\[
A = \begin{pmatrix} 1 & 8 \\ 1 & -1 \end{pmatrix} \quad f(t) = \begin{pmatrix} e^{-t} \\ te^t \end{pmatrix}
\]

\(a\) \(A\) \(b\)
b) \[A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}, \quad y f(t) = \begin{pmatrix} \tan t \\ 1 \end{pmatrix} \]

c) \[A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}, \quad y f(t) = \begin{pmatrix} 0 \\ t \\ 2e^t \end{pmatrix} \]

10. Resolver los siguientes problemas de valor inicial

a) \[X' = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} X + \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}, \quad X(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \]

b) \[X' = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} X + \begin{pmatrix} 1/t \\ 1/t \end{pmatrix}, \quad X(1) = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \]

c) \[X' = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} X + \begin{pmatrix} 2te^{2t} \\ 0 \\ 0 \end{pmatrix}, \quad X(0) = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \]

11. Determine la condición del parámetro real \(\mu \) tal que \((0, 0)\) sea un punto espiral estable del sistema lineal

\[\begin{align*}
 x' &= y \\
 y' &= -x + \mu y
\end{align*} \]

12. Supongamos que las poblaciones (Predador-Presa) satisfacen las ecuaciones

\[\begin{align*}
 \frac{dx}{dt} &= x(1 - 2y) \\
 \frac{dy}{dt} &= y(x - 1)
\end{align*} \]

a) Resolver el sistema.

b) Clasifique cada punto estacionario y dibuje el retrato fase del sistema.

13. Escriba la ecuación diferencial no lineal de segundo orden respectiva en forma de un sistema autónomo plano. Determine todos los puntos críticos

a) \[x'' + 9 \sin x = 0 \]

b) \[x'' + (x')^2 + 2x = 0 \]

14. El crecimiento de una burbuja de vapor durante el proceso de ebullición lo rige la ecuación diferencial

\[\frac{2}{3}xx'' + (x')^2 = 1 - \frac{1}{x}, \]
Problemas Propuestos

4. Sistemas de ecuaciones diferenciales lineales de primer orden

donde \(x \) es el radio de la burbuja. Defina una nueva variable \(y \), mediante \(y = x' \). Escriba la ecuación de crecimiento de la burbuja como un sistema y determine el o los puntos críticos del sistema e identifique puntos silla o centros y esbozar el retrato fase.

15. Dado el sistema

\[
\begin{align*}
 x' &= \frac{dx}{dt} = y^2 \\
 y' &= \frac{dy}{dt} = -\frac{2}{3}x
\end{align*}
\]

\(a) \) Haga el cambio de variable \(\frac{y'}{x'} = \frac{dy}{dx} \) para transformar el sistema en una ecuación diferencial ordinaria de primer orden y luego resolverla.

\(b) \) Esboce el diagrama fase de la solución de la ecuación diferencial de la parte (a).

16. Dado el modelo depredador-presa

\[
\begin{align*}
 \frac{dx}{dt} &= x(a - bx - my) \\
 \frac{dy}{dt} &= y(a - by - nx)
\end{align*}
\]

clasificar los puntos de equilibrios y luego hacer un esbozo, en un mismo plano, del retrato fase.

17. Dado el sistema poblacional predador - presa

\[
\begin{align*}
 \frac{dx}{dt} &= ax - pxy = x(a - py) \\
 \frac{dy}{dt} &= -by + qxy = y(-b + qx)
\end{align*}
\]

\(a) \) Resolver el sistema

\(b) \) Clasifique los puntos de equilibrios y grafique el sistema.

18. Sobrevivencia de una especie. Supongamos que las poblaciones \(x(t) \) y \(y(t) \) satisfacen las ecuaciones

\[
\begin{align*}
 \frac{dx}{dt} &= 14x - \frac{1}{2}x^2 - xy \\
 \frac{dy}{dt} &= 16y - \frac{1}{2}y^2 - xy
\end{align*}
\]
estudiar la estabilidad en cada punto crítico.

19. Supongamos que las poblaciones \(x(t) \) y \(y(t) \) satisfacen las ecuaciones

\[
\begin{align*}
 \frac{dx}{dt} &= 3x - x^2 - \frac{1}{2}xy \\
 \frac{dy}{dt} &= 4y - 2xy
\end{align*}
\]
estudiar la estabilidad en cada punto estacionario y dibuje el retrato fase del sistema.
20. Dado el sistema Predador-Presa
\[
\begin{align*}
\frac{dx}{dt} &= x^2 - 2x - xy \\
\frac{dy}{dt} &= y^2 - 4y + xy
\end{align*}
\]
donde \(x(t)\) es la presa y \(y(t)\) el predador. Estudiar la estabilidad en cada punto estacionario y dibuje el retrato fase del sistema.

21. Dado el siguiente modelo poblacional
\[
\begin{align*}
\frac{dx}{dt} &= x(3 - x - 2y) \\
\frac{dy}{dt} &= y(2 - x - y)
\end{align*}
\]
Clasifique los puntos de equilibrios y esboce las trayectorias del sistema.
Soluciones en serie para ecuaciones diferenciales lineales

En el presente capítulo emplearemos las series de potencias para construir conjuntos fundamentales de soluciones de ecuaciones diferenciales lineales de segundo orden, cuyos coeficientes son funciones de la variable independiente.

5.1 Revisión de series de potencias

En esta sección se resume de manera breve los resultados de un tipo especial de series infinitas denominadas series de potencias.

Definición 5.1

Un serie de la forma

\[
\sum_{n=0}^{\infty} c_n (x - x_0)^n = c_0 + c_1 (x - x_0) + c_2 (x - x_0)^2 + c_3 (x - x_0)^3 + \cdots
\]

(5.1)

es denominada serie de potencias alrededor de \(x_0\) o una serie de potencias centrada en \(x_0\). Las constantes \(c_0, c_1, c_2, \ldots\) se denominan coeficientes de la serie de potencias.

Ejemplo 5.1

Las series de potencias como

1. \(\sum_{n=0}^{\infty} (x - 1)^n\) está centrada en \(x_0 = 1\),

2. \(\sum_{n=1}^{\infty} 3^{n-1} x^n = x + 3x^2 + 9x^3 + \cdots\) está centrada en \(x_0 = 0\).
Definición 5.2

(a) La serie de potencias dada en (5.1) es **convergente** en un valor específico de x si su secuencia de sumas parciales $\{S_m(x)\}$ converge; esto es, si el límite

$$\lim_{m \to +\infty} S_m(x) = \lim_{m \to +\infty} \sum_{n=0}^{m} c_n(x - x_0)^n$$

existe. Si el límite no existe en x, se dice que la serie es **divergente**.

(b) Decimos que la serie de potencias (5.1) **converge absolutamente** en un punto x si la serie

$$\sum_{n=0}^{+\infty} |c_n(x - x_0)^n|$$

converge. Es posible demostrar que si la serie converge absolutamente, entonces la serie también converge; sin embargo, la recíproca no es necesariamente cierta.

(c) Existe un número no negativo ρ denominado **radio de convergencia**, tal que (5.1) converge absolutamente para $|x - x_0| < \rho$ y diverge para $|x - x_0| > \rho$. Una serie que converge solo en su centro x_0, tenemos que $\rho = 0$. Si la serie converge para todo x, entonces tenemos que $\rho = +\infty$. Si $\rho > 0$, entonces $|x_0 - \rho, x_0 + \rho|$ se llama **intervalo de convergencia**. Una serie de potencias puede o no converger en los extremos $x_0 - \rho$ y $x_0 + \rho$ del intervalo de convergencia.

La serie puede **converger o diverger**

![Figura 5.1: Intervalo de convergencia de una serie de potencias.](image)

La convergencia absoluta de una serie de potencias, comúnmente se puede determinar mediante la prueba del cociente. Si $c_n \neq 0$ para toda n y que

$$\lim_{n \to +\infty} \left| \frac{c_{n+1}(x - x_0)^{n+1}}{c_n(x - x_0)^n} \right| = |x - x_0| \lim_{n \to +\infty} \left| \frac{c_{n+1}}{c_n} \right| = L.$$

Si $L < 1$, la serie converge absolutamente; si $L > 1$ la serie diverge, y si $L = 1$ el criterio no es concluyente. Para mayores detalles sobre series de potencias ver [1].

Ejemplo 5.2

Determine el intervalo de convergencia de la serie de potencias

$$\sum_{n=1}^{+\infty} n(3x)^n.$$

Solución.

Usando el criterio del cociente, tenemos que

$$\lim_{n \to +\infty} \left| \frac{(n + 1)(3x)^{n+1}}{n(3x)^n} \right| = \lim_{n \to +\infty} \left| \frac{(n + 1)3^{n+1}x^{n+1}}{n3^{n}x^{n}} \right| = 3|x| \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = 3|x|.$$

Entonces, para que la serie sea convergente se debe cumplir que $3|x| < 1$, donde $|x| < \frac{1}{3}$.

5. Soluciones en serie para ecuaciones diferenciales lineales
Así, tenemos que el radio de convergencia es \(\rho = \frac{1}{3} \). No es difícil demostrar que para \(x = -\frac{1}{3} \) y \(x = \frac{1}{3} \) la serie es divergente, en consecuencia el intervalo de convergencia es \(\left[-\frac{1}{3}, \frac{1}{3} \right] \).

5.1.1 Representación de funciones como series de potencias

Para cada valor de \(x \) para el cual la serie de potencias \(\sum_{n=0}^{+\infty} c_n (x-x_0)^n \) converge, obtenemos un número real que es la suma de la serie; por lo que, una serie de potencias define una función \(f \) dada por

\[
f(x) = \sum_{n=0}^{+\infty} c_n (x-x_0)^n \]

cuyo dominio es el intervalo de convergencia de la serie.

Ejemplo 5.3: Serie geométrica

1. Para una función \(f \) dada por \(f(x) = \frac{1}{1-x} \), vemos que su serie de potencias es

\[
f(x) = 1 + x + x^2 + \cdots + x^n + \cdots = \sum_{n=0}^{+\infty} x^n, \quad |x| < 1.
\]

2. Para la función \(g \) definida por \(g(x) = \frac{1}{1-x^2} \), vemos que su serie de potencias es

\[
g(x) = 1 + x^2 + x^4 + \cdots + x^{2n} + \cdots = \sum_{n=0}^{+\infty} x^{2n}, \quad |x| < 1.
\]

3. Para una función \(h \) dada por \(h(x) = \frac{1}{1+x} \), su serie de potencias se define como

\[
h(x) = 1 - x + x^2 + \cdots + (-1)^n x^n + \cdots = \sum_{n=0}^{+\infty} (-1)^n x^n, \quad |x| < 1.
\]

Teorema 5.1: Operaciones con series de potencias

Sean \(f(x) = \sum_{n=0}^{+\infty} a_n (x-x_0)^n \) y \(g(x) = \sum_{n=0}^{+\infty} b_n (x-x_0)^n \) dos series de potencias con radios de convergencia \(\rho_1 \) y \(\rho_2 \), respectivamente y sea \(c \neq 0 \) una constante real. Entonces,

(i) \(\sum_{n=0}^{+\infty} (ca_n)(x-x_0)^n \) tiene radio de convergencia \(\rho_1 \), y \(\sum_{n=0}^{+\infty} (ca_n)(x-x_0)^n = c \sum_{n=0}^{+\infty} a_n (x-x_0)^n \) siempre que la serie de la derecha converja. Observe que para el caso de \(c = 0 \), se tendría una serie constante que converge en todo \(\mathbb{R} \).

(ii) \(f(x) + g(x) = \sum_{n=0}^{+\infty} (a_n + b_n)(x-x_0)^n \) tiene radio de convergencia \(\rho \), con \(\rho \geq \min(\rho_1, \rho_2) \), y

\[
\sum_{n=0}^{+\infty} (a_n + b_n)(x-x_0)^n = \sum_{n=0}^{+\infty} a_n (x-x_0)^n + \sum_{n=0}^{+\infty} b_n (x-x_0)^n
\]

siempre que las dos series de la derecha converjan.
(iii) **Producto de Cauchy.**

\[f(x)g(x) = \left(\sum_{n=0}^{+\infty} a_n(x-x_0)^n \right) \left(\sum_{n=0}^{+\infty} b_n(x-x_0)^n \right) = \sum_{n=0}^{+\infty} c_n(x-x_0)^n, \]

donde \(c_n = \sum_{k=0}^{n} b_k a_{n-k} \) y el radio de convergencia de la serie del segundo miembro es \(\rho \), con \(\rho \geq \min\{\rho_1, \rho_2\} \).

Teorema 5.2: Principio de identidad

Si \(\sum_{n=0}^{+\infty} c_n(x-x_0)^n = 0 \) para todo \(x \) en cierto intervalo de convergencia, entonces \(c_n = 0 \) para todo \(n \).

Si una serie de potencias tiene radio de convergencia \(\rho > 0 \), se puede diferenciar o integrar término a término. La serie resultante convergerá a la derivada o integral apropiada de la suma de la serie original en todas partes excepto, posiblemente, en los extremos del intervalo de convergencia de la serie inicial. Formalizaremos este hecho en el siguiente teorema.

Teorema 5.3: Diferenciación e integración

Si la serie \(f(x) = \sum_{n=0}^{+\infty} c_n(x-x_0)^n \) tiene un radio de convergencia \(\rho > 0 \), entonces \(f \) es diferenciable en el intervalo \(|x_0 - \rho, x_0 + \rho| \) y

\[f'(x) = \sum_{n=1}^{+\infty} n c_n(x-x_0)^{n-1} = c_1 + 2c_2(x-x_0) + 3c_3(x-x_0)^2 + \cdots, \text{ para } |x-x_0| < \rho \]

y

\[\int f(x)dx = \sum_{n=0}^{+\infty} \frac{c_n}{n+1} (x-x_0)^{n+1} + C, \text{ para } |x-x_0| < \rho. \]

Ejemplo 5.4

Obtenga la representación en serie de potencias de la función \(f \), dada por \(f(x) = \frac{1}{(1-x)^3} \).

Solución.

Tenemos que la serie geométrica, está dada por

\[\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + x^3 + \cdots, \text{ para } |x| < 1. \]

Luego, diferenciando la serie término a término, obtenemos

\[\frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1} = 1 + 2x + 3x^2 + 4x^3 + \cdots, \text{ para } |x| < 1. \]

Diferenciando nuevamente,

\[\frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2} = 2 + 2 \cdot 3x + 3 \cdot 4x^2 + \cdots, \text{ para } |x| < 1. \]

Entonces, dividiendo por 2, se obtiene

\[f(x) = \frac{1}{(1-x)^3} = \sum_{n=2}^{+\infty} \frac{n(n-1)}{2} x^{n-2} \text{ para } |x| < 1. \]
Ejemplo 5.5

Encuentre la representación en serie de potencias de la función F, dada por $F(x) = \arctan(x)$.

Solución.

Tomando una serie geométrica de la forma

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots, \quad |x| < 1.$$

Luego, sustituyendo x por x^2, obtenemos

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + \cdots, \quad |x| < 1.$$

Integrando término a término, se tiene

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} + C = x - \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots + C, \quad |x| < 1,$$

donde C es la constante de integración. Además, como $\arctan(x)$ es continua en $x = 0$, tenemos que

$$\arctan(0) = \sum_{n=0}^{\infty} (-1)^n (0)^{2n+1} + C = C \implies C = 0.$$

Por lo tanto,

$$F(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad |x| < 1.$$

Desplazamiento del índice de la suma

El índice de la suma de una serie de potencias es un índice nominal; por lo tanto,

1. $f(x) = \sum_{n=0}^{\infty} c_n (x-x_0)^n = \sum_{k=0}^{\infty} c_k (x-x_0)^k = \sum_{l=0}^{\infty} c_l (x-x_0)^l$.

2. $g(x) = \sum_{n=0}^{\infty} c_n (x-x_0)^n = \sum_{k=l}^{\infty} c_{k-l} (x-x_0)^{k-l}$

Ejemplo 5.6

Expresé la siguiente serie $\sum_{n=4}^{\infty} n(n-1)(n-2)(n-3)c_n(x-x_0)^{n-4}$ como una serie de potencias donde el término genérico sea x^k.

Solución.

Haciendo $k = n - 4$, se tiene que $n = k + 4$. Así, cuando $n = 3$ tenemos que $k = 0$. Por lo tanto,

$$\sum_{n=4}^{\infty} n(n-1)(n-2)(n-3)c_n(x-x_0)^{n-4} = \sum_{k=0}^{\infty} (k+4)(k+3)(k+2)(k+1) c_{k+4} (x-x_0)^k.$$
Definición 5.3: Función analítica

Una función \(f \) es analítica en \(x = x_0 \) si puede representarse mediante una serie de potencias en \((x - x_0)\) con radio de convergencia positivo.

Ejemplo 5.7

Algunas representaciones de funciones conocidas son:

1. \(e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots = \sum_{n=0}^{+\infty} \frac{x^n}{n!}, \) para \(x \in \mathbb{R} \).

2. \(\sin(x) = x - \frac{x^3}{3!} + \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \cdots = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \) para \(x \in \mathbb{R} \).

3. \(\cos(x) = 1 - \frac{x^2}{2!} + \cdots + (-1)^n \frac{x^{2n}}{(2n)!} + \cdots = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \) para \(x \in \mathbb{R} \).

4. \(\ln(x + 1) = x - \frac{x^2}{2} + \cdots + (-1)^n \frac{x^{n+1}}{n+1} + \cdots = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{n+1}, \) para \(-1 < x \leq 1\).

Observación. Si \(f \) es analítica en \(x_0 \), entonces

\[
f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n;
\]

esto es, la serie de potencias coincide con la serie de Taylor de \(f \).

5.2 Solución mediante series de potencias

En esta sección mostraremos métodos para resolver ecuaciones diferenciales lineales de segundo orden cuando los coeficientes son funciones de la variable independiente (coeficientes analíticos); en especial, en el caso donde los coeficientes son polinomios. Supongamos que la ecuación diferencial lineal de segundo orden

\[
a_2(x) \frac{d^2y}{dx^2} + a_1(x) \frac{dy}{dx} + a_0(x) y = 0 \tag{5.2}
\]

se escribe en la forma

\[
y'' + P(x) y' + Q(x) y = 0 \tag{5.3}
\]

llamada la forma estándar, donde \(P(x) = \frac{a_1(x)}{a_2(x)} \) y \(Q(x) = \frac{a_0(x)}{a_2(x)} \), si \(a_2(x) \neq 0 \).

Definición 5.4: Puntos ordinarios y singulares

Decimos que un punto \(x_0 \) es un \textit{punto ordinario} de la ecuación (5.2) si \(P(x) \) y \(Q(x) \) de la forma estándar (5.3) son analíticas en \(x_0 \). Y, si \(x_0 \) no es un punto ordinario, decimos que es un \textit{punto singular} de la ecuación.

Ejemplo 5.8

Encuentre los puntos ordinarios y singulares de las ecuaciones:

\begin{enumerate}
 \item \(x y'' + (x^2 - 3x) y' + \sin(x) y = 0 \)
 \item \((x^2 - 4) y'' + (x^3 + 2x^2) y' + 3x^2 y = 0 \)
\end{enumerate}

Solución.
(a) Expresando la ecuación en la forma estándar

\[y'' + (x - 3)y' + \frac{\sin(x)}{x}y = 0, \]

se tiene una función polinomial \(P(x) = x - 3 \) y una función \(Q(x) = \frac{\sin(x)}{x} \). Observamos que ambas funciones son analíticas para todo \(x \).

En efecto, probemos para un caso particular; esto es, obtengamos la serie de potencias alrededor de un punto, supongamos \(x_0 = 0 \). En este caso, observamos que como \(P \) es un polinomio, se puede expresar de la siguiente manera

\[P(x) = -3 + x + 0x^2 + 0x^3 + \cdots, \quad x \in \mathbb{R}. \]

Por otro lado, para el caso de \(Q \), tenemos

\[Q(x) = \frac{\sin(x)}{x} = 1 \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)!}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R}. \]

Así, podemos concluir que ambas funciones admiten su serie de potencias alrededor de \(x_0 = 0 \). De manera similar, se puede seguir determinando una expansión en serie de potencias alrededor de un punto \(x_0 \neq 0 \). Finalmente, tenemos que todos los puntos son ordinarios; lo que implica que no existen puntos singulares.

(b) La ecuación en la forma (5.3) es

\[y'' + \frac{x^2}{x-2} y' + \frac{3x^2}{x^2-4} y = 0. \]

En este caso, observamos que \(P(x) = \frac{x^2}{x-2} \) la cual no es analítica en \(x = 2 \). Por otro lado, tenemos que \(Q(x) = \frac{3x^2}{x^2-4} \) no es analítica en \(x = -2 \) ni en \(x = 2 \). Finalmente, los puntos \(x = \pm 2 \) son singulares y el resto son puntos ordinarios.

5.2.1 **Soluciones alrededor de puntos ordinarios**

Estamos interesados principalmente en el caso en que (5.2) tenga coeficientes polinómicos. Un polinomio es analítico en cualquier valor \(x \), y una función racional es analítica salvo en los puntos donde su denominador sea cero. Por lo tanto, si \(a_2(x), a_1(x) \) y \(a_0(x) \) son polinomios sin factores comunes, entonces las funciones racionales \(P(x) = \frac{a_1(x)}{a_2(x)} \) y \(Q(x) = \frac{a_0(x)}{a_2(x)} \) son analíticas excepto donde \(a_2 (x_0) = 0 \).

Por lo tanto, \(x_0 \) es un punto ordinario de (5.2) si \(a_2 (x_0) \neq 0 \), mientras que \(x = x_0 \) es un punto singular de (5.2) si \(a_2 (x_0) = 0 \).

Ejemplo 5.9

Tenemos que los únicos puntos singulares de la ecuación

\[(x^2 - 4) y'' - 3xy' + 3y = 0 \]

son soluciones de \(x^2 - 4 = 0 \); esto es, \(x = \pm 2 \). Por lo que, todos los valores finitos de \(x \) son puntos ordinarios.
Soluciones en serie para ecuaciones diferenciales lineales

Ejemplo 5.10

La ecuación

\[(x^2 + 2) y'' + 2x y' + 6y = 0\]

tiene puntos singulares en las soluciones de \(x^2 + 2 = 0\); es decir, \(x = \pm \sqrt{2}i\). Todos los demás valores reales o complejos, son puntos ordinarios. Por lo tanto, podemos concluir que los puntos singulares no necesitan ser números reales.

Enunciamos el siguiente teorema sobre la existencia de soluciones en forma de series de potencias.

Teorema 5.4: Existencia de soluciones en forma de series de potencias

Si \(x_0\) es un punto ordinario de la ecuación (5.2), entonces la ecuación tiene dos soluciones linealmente independientes

\[y_1(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n \quad \text{y} \quad y_2(x) = \sum_{n=0}^{+\infty} b_n (x - x_0)^n\]

tal que la solución general de la ecuación (5.2) es

\[y(x) = \sum_{n=0}^{+\infty} c_n (x - x_0)^n = c_0 y_1(x) + c_1 y_2(x),\]
(5.4)

siendo el radio convergencia de las soluciones \(y_1\) y \(y_2\) la distancia entre \(x_0\) y el punto singular más cercano.

Observación. Por simplicidad, solo encontraremos soluciones en la forma de series de potencias en torno a un punto ordinario \(x_0 = 0\); es decir, soluciones de la forma

\[y(x) = \sum_{n=0}^{+\infty} c_n x^n.\]
(5.5)

Si fuera necesario encontrar una solución en forma de series de potencias alrededor de un punto ordinario \(x_0 \neq 0\), hacemos \(t = x - x_0\) en la ecuación (5.4), obteniendo una ecuación en la forma (5.5) con \(z(t) = y(t + x_0)\).

Ejemplo 5.11

Encuentre una solución de la ecuación

\[y'' - xy = 0\]

en serie de potencias alrededor del punto ordinario \(x_0 = 0\).

Solución.

Se observa que todos los puntos son ordinarios, en particular para \(x_0 = 0\). Supongamos que \(y = \phi(x)\) es solución de la ecuación diferencial y posee un desarrollo en serie de potencias

\[y = \sum_{n=0}^{\infty} c_n x^n.\]

Luego, derivando dos veces tenemos

\[y'' = \sum_{n=2}^{+\infty} n(n-1)c_n x^{n-2}.\]

Reemplazando en la ecuación

\[\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=0}^{\infty} c_n x^{n+1} = 0\]
Luego, modificando el índice en cada sumatoria de manera que los términos de ambas series que contengan la variable x tengan la forma x^n, resultando

$$\sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n - \sum_{n=1}^{\infty} c_{n-1}x^n = 0.$$

Ordenando y agrupando términos semejantes, obtenemos

$$2 \cdot c_2 + \sum_{n=1}^{\infty} [(n+2)(n+1)c_{n+2} - c_n]x^n = 0, \quad |x| < \rho$$

de donde se tiene que los coeficientes son de la forma

$$c_2 = 0 \quad y \quad c_{n+2} = \frac{c_{n-1}}{(n+2)(n+1)} \quad para \quad n = 1, 2, 3, \ldots$$

Tomando algunos valores para n, vemos que los coeficientes están dados de la siguiente manera

$$c_2 = 0$$

$$n = 1: \quad c_3 = \frac{c_0}{3 \cdot 2}$$

$$n = 2: \quad c_4 = \frac{c_1}{4 \cdot 3}$$

$$n = 3: \quad c_5 = \frac{c_2}{5 \cdot 4} = 0$$

$$n = 4: \quad c_6 = \frac{6 \cdot 5}{7 \cdot 6} = \frac{1}{6 \cdot 5 \cdot 2}c_0$$

$$n = 5: \quad c_7 = \frac{7 \cdot 6}{8 \cdot 7} = \frac{1}{7 \cdot 6 \cdot 4}c_1$$

$$n = 6: \quad c_8 = \frac{c_5}{8 \cdot 7} = 0$$

$$n = 7: \quad c_9 = \frac{c_6}{9 \cdot 8} = \frac{1}{9 \cdot 8 \cdot 6 \cdot 5 \cdot 2}c_0$$

$$n = 8: \quad c_{10} = \frac{c_7}{10 \cdot 9} = \frac{1}{10 \cdot 9 \cdot 7 \cdot 6 \cdot 4 \cdot 3}c_1$$

: \quad : \quad :

Se observa que, como $c_2 = 0$ se obtiene que $c_5 = c_8 = c_{11} = \cdots = 0$. Además, Para la sucesión de coeficiente $c_0, c_3, c_6, c_9, \ldots$ es conveniente escribir

$$c_{3n} = \frac{c_0}{2 \cdot 3 \cdot 5 \cdot 6 \cdots (3n - 4)(3n - 3)(3n - 1)(3n)}, \quad n = 1, 2, 3, \ldots$$

De la misma manera para la sucesión $c_1, c_4, c_7, c_{10}, \ldots$, obtenemos

$$c_{3n+1} = \frac{c_1}{3 \cdot 4 \cdot 6 \cdot 7 \cdots (3n - 3)(3n - 2)(3n + 1)}, \quad n = 1, 2, 3, \ldots$$

Así, tenemos dos soluciones linealmente independientes

$$y_1 = 1 + \frac{x^3}{2 \cdot 3} + \frac{x^6}{2 \cdot 3 \cdot 5 \cdot 6} + \cdots + \frac{x^{3n}}{2 \cdot 3 \cdots (3n-1)(3n)} + \cdots = 1 + \sum_{n=1}^{\infty} \frac{x^{3n}}{2 \cdot 3 \cdots (3n-1)(3n)}$$

$$y_2 = 1 + \frac{x^4}{3 \cdot 4} + \frac{x^7}{3 \cdot 4 \cdot 6 \cdot 7} + \cdots + \frac{x^{3n+1}}{3 \cdot 4 \cdots (3n)(3n+1)} + \cdots = 1 + \sum_{n=1}^{\infty} \frac{x^{3n+1}}{3 \cdot 4 \cdots (3n)(3n+1)}$$

Por lo tanto, la solución general de la ecuación es

$$\phi(x) = c_0y_1 + c_2y_2 = c_0 \left[1 + \sum_{n=1}^{\infty} \frac{x^{3n}}{2 \cdot 3 \cdots (3n-1)(3n)} \right] + c_1 \left[1 + \sum_{n=1}^{\infty} \frac{x^{3n+1}}{3 \cdot 4 \cdots (3n)(3n+1)} \right]$$
Ejemplo 5.12

Resolver en forma de serie de potencia en torno al punto ordinario $x = 0$

$$(x^2 + 1)y'' + xy' - y = 0.$$

Solución.

Observamos que los puntos singulares son $x = \pm i$, por lo que la ecuación tiene una solución en serie de potencias que converge en $|x| < 1$. Entonces, supongamos que la solución tiene un desarrollo en serie de potencias de la forma

$$y = \sum_{n=0}^{\infty} c_n x^n;$$

luego, derivando tenemos que

$$y' = \sum_{n=1}^{\infty} n c_n x^{n-1} \quad \text{y} \quad y'' = \sum_{n=2}^{\infty} n(n-1) c_n x^{n-2}.$$

Reemplazando en la ecuación diferencial

$$(x^2 + 1) \sum_{n=2}^{\infty} n(n-1) c_n x^{n-2} + x \sum_{n=1}^{\infty} n c_n x^{n-1} - \sum_{n=0}^{\infty} c_n x^n = 0.$$

Entonces, multiplicando y modificando de algunas sumatoria, obtenemos

$$\sum_{n=2}^{\infty} n(n-1) c_n x^n + \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2} x^n + \sum_{n=1}^{\infty} n c_n x^n - \sum_{n=0}^{\infty} c_n x^n = 0.$$

Luego, desarrollando y agrupando términos semejantes, se tiene

$$2c_2 - c_0 + 6c_3 x + \sum_{n=2}^{\infty} \left[(n^2 - 1) c_n + (n+2)(n+1)c_{n+2} \right] x^n = 0.$$

Por lo que obtenemos la siguiente recurrencia

$$\begin{cases} c_2 = \frac{1}{2} c_0 \\ c_3 = 0 \\ c_{n+2} = -\frac{n-1}{n+2} c_n, \quad \text{para } n = 2, 3, 4, \ldots \end{cases}$$

Luego, dando algunos valores para n, tenemos

$$\begin{align*}
n = 2: & \quad c_4 = -\frac{1}{4} c_2 = -\frac{1}{2^2} c_0 = -\frac{1}{2^2 2!} c_0 \\
n = 3: & \quad c_5 = -\frac{2}{5} c_3 = 0 \\
n = 4: & \quad c_6 = -\frac{3}{4} c_4 = \frac{1\cdot3}{4} c_0 \\
n = 5: & \quad c_7 = -\frac{4}{7} c_5 = 0 \\
n = 6: & \quad c_8 = -\frac{5\cdot3\cdot5}{2^4} c_0 \\
n = 7: & \quad c_9 = 0 \\
n = 8: & \quad c_{10} = -\frac{1\cdot3\cdot5\cdot7}{2^5} c_0 \\
\vdots & \quad \vdots \end{align*}$$
Así, se tiene dos soluciones linealmente independientes

\[y_1(x) = 1 + \frac{1}{2} x^2 + \sum_{n=2}^{\infty} \frac{(-1)^n+1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n n!} x^{2n} \quad \text{y} \quad y_2(x) = c_1 x \]

Por lo tanto, la solución general es

\[y(x) = c_0 y_1 + c_1 y_2 = c_0 \left[1 + \frac{1}{2} x^2 + \sum_{n=2}^{\infty} \frac{(-1)^n+1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n n!} x^{2n} \right] + c_1 x, \quad |x| < 1. \]

Ejemplo 5.13

Halle la solución de la ecuación diferencial

\[x^2 y'' + 2y' = 0 \quad \text{en torno a} \quad x_0 = 2. \]

Solución.

Se observa que \(P(x) = \frac{2}{x^2} \) es analítica en \(x_0 = 2 \). Haciendo \(t = x - 2 \) y \(z = y(t + 2) \), tenemos

\[(t^2 + 2t + 1)z'' + 2z' = 0 \]

Supongamos que la función \(z = \phi(t) \) es solución de la ecuación diferencial y tiene un desarrollo en serie de potencias alrededor de \(t = 0 \); esto es,

\[\phi(t) = \sum_{n=0}^{\infty} c_n t^n \]

con radio de convergencia \(\rho > 0 \). Entonces la función \(z = \phi(t) \) debe satisfacer la ecuación diferencial; es decir,

\[(t^2 + 2t + 1) \left(\sum_{n=0}^{\infty} c_n t^n \right)'' + 2 \left(\sum_{n=1}^{\infty} c_n t^n \right)' = 0 \]

Entonces,

\[(t^2 + 2t + 1) \sum_{n=2}^{\infty} n(n-1)c_n t^{n-2} + 2 \sum_{n=1}^{\infty} nc_n t^{n-1} = 0 \]

Luego, multiplicando , tenemos que la ecuación anterior se expresa

\[\sum_{n=2}^{\infty} n(n-1)c_n t^n + \sum_{n=2}^{\infty} 2n(n-1)c_n t^{n-1} + \sum_{n=2}^{\infty} n(n-1)nc_n t^{n-2} + \sum_{n=1}^{\infty} 2nc_n t^{n-1} = 0. \]

Modificando el valor del índice en algunas sumatorias, de tal manera que los términos que contengan la variable \(t \), esté en la forma \(t^n \)

\[\sum_{n=2}^{\infty} n(n-1)c_n t^n + \sum_{n=1}^{\infty} 2(n+1)nc_n t^{n+1} + \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2} t^n + \sum_{n=0}^{\infty} 2(n+1)c_{n+1} t^n = 0. \]

Por otro lado, se observa que todas las series pueden iniciar desde \(n = 0 \); entonces, agrupando tenemos que

\[\sum_{n=0}^{\infty} [n(n-1)c_n + 2(n+1)nc_{n+1} + (n+2)(n+1)c_{n+2} + 2(n+1)c_{n+1}] t^n = 0. \]

Así, obtenemos la siguiente recurrencia

\[c_{n+2} = -\frac{2(n+1)}{n+2} c_{n+1} - \frac{n(n-1)}{(n+2)(n+1)} c_n, \quad \text{para} \quad n = 0, 1, 2, 3, \ldots \]
Soluciones en serie para ecuaciones diferenciales lineales

Luego, tomando algunos valores para n, se determinan algunos coeficientes

$$
n = 0: \quad c_2 = \frac{2}{3} c_1 - 0 c_0 = -c_1
$$
$$
n = 1: \quad c_3 = \frac{4}{3} c_2 - 0 c_1 = -\frac{4}{3} c_2 = \frac{4}{3} c_1
$$
$$
n = 2: \quad c_4 = -\frac{6}{4} c_3 - \frac{2}{4(3)} c_2 = \frac{6}{4(3)} c_1 + \frac{2}{4(3)} c_1 = -\frac{11}{6} c_1
$$
$$
n = 3: \quad c_5 = \frac{8}{5} c_4 - \frac{6}{5(4)} c_3 = \frac{6}{5(4)} c_1 - \frac{6}{5(4)} c_1 = \frac{38}{15} c_1
$$
$$
n = 4: \quad c_6 = -\frac{10}{6} c_5 - \frac{12}{6(5)} c_4 = -\frac{157}{45} c_1
$$

Entonces tenemos dos soluciones linealmente independientes

$$
z_1(t) = c_0 \quad y \quad z_2(t) = c_1 \left[t - t^2 + \frac{4}{3} t^3 - \frac{11}{6} t^4 + \frac{38}{15} t^5 - \frac{157}{45} t^6 + \cdots \right]
$$

Así, al hacer $t = x - 2$, se obtiene

$$
y_1(x) = c_0 \quad y \quad y_2(x) = c_1 \left[(x-2) - (x-2)^2 + \frac{4}{3} (x-2)^3 - \frac{11}{6} (x-2)^4 + \frac{38}{15} (x-2)^5 + \cdots \right]
$$

Finalmente, la solución general es

$$
y(x) = c_0 + c_1 \left[(x-2) - (x-2)^2 + \frac{4}{3} (x-2)^3 - \frac{11}{6} (x-2)^4 + \frac{38}{15} (x-2)^5 + \cdots \right]
$$

Ejemplo 5.14

Usando series de potencias para resolver el siguiente problema de valor inicial

$$(x - 1)y'' - xy' + y = 0, \quad y(0) = -2, \quad y'(0) = 6.$$

Solución.

Sustituyendo $y(x) = \sum_{n=0}^{+\infty} c_n x^n$ en la ecuación diferencial, tenemos

$$
(x - 1)y'' - xy' + y = (x - 1) \left(\sum_{n=0}^{+\infty} c_n x^n \right)'' - x \left(\sum_{n=0}^{+\infty} c_n x^n \right)' + \sum_{n=0}^{+\infty} c_n x^n
$$

$$
= (x - 1) \left(\sum_{n=2}^{+\infty} n(n-1) c_n x^{n-2} \right) - x \left(\sum_{n=1}^{+\infty} n c_n x^{n-1} \right) + \sum_{n=0}^{+\infty} c_n x^n
$$

$$
= \sum_{n=2}^{+\infty} n(n-1) c_n x^{n-1} - \sum_{n=2}^{+\infty} n(n-1) c_n x^{n-2} - \sum_{n=1}^{+\infty} n c_n x^n + \sum_{n=0}^{+\infty} c_n x^n
$$

$$
= \sum_{k=1}^{+\infty} (k+1) k c_{k+1} x^k - \sum_{k=0}^{+\infty} (k+2)(k+1) c_{k+2} x^k - \sum_{k=1}^{+\infty} k c_k x^k + \sum_{k=0}^{+\infty} c_k x^k
$$

$$
= -2c_2 + c_0 + \sum_{k=1}^{+\infty} ((k+1) k c_{k+1} - (k+2)(k+1) c_{k+2} - k c_k + c_k) x^k = 0.
$$
Por lo que los coeficientes c_k son de la forma

$$
\begin{align*}
c_2 &= \frac{1}{2}c_0 \\
c_{k+2} &= \frac{k}{k+2} \frac{(k-1)c_k}{(k+2)(k+1)}, \quad k = 1, 2, 3, \ldots
\end{align*}
$$

Además, dando algunos valores para k, tenemos

$$
\begin{align*}
k = 1: \quad & c_3 = \frac{1}{3}c_2 - \frac{0}{3 \cdot 2} c_1 = \frac{1}{3} c_2 = \frac{1}{3!} c_0 \\
k = 2: \quad & c_4 = \frac{2}{4} c_3 - \frac{1}{4 \cdot 3} c_2 = \frac{2}{4} \left(\frac{1}{3!} c_0 \right) - \frac{1}{4 \cdot 3} \left(\frac{1}{2} c_0 \right) = \frac{1}{4!} c_0 \\
k = 3: \quad & c_5 = \frac{3}{5} c_4 - \frac{2}{5 \cdot 4} c_3 = \frac{3}{5} \left(\frac{1}{4!} c_0 \right) - \frac{2}{5 \cdot 4} \left(\frac{1}{3!} c_0 \right) = \frac{1}{5!} c_0 \\
k = 4: \quad & c_6 = \frac{4}{6} c_5 - \frac{3}{6 \cdot 5} c_4 = \frac{4}{6!} c_0 \\
k = 5: \quad & c_7 = \frac{5}{7} c_6 - \frac{4}{7 \cdot 6} c_5 = \frac{1}{7!} c_0 \\
k = 6: \quad & c_8 = \frac{6}{8} c_7 - \frac{5}{8 \cdot 7} c_6 = \frac{1}{8!} c_0 \\
& \vdots
\end{align*}
$$

Por las condiciones iniciales tenemos que: $c_0 = -2$ y $c_1 = 6$. Entonces

$$
c_2 = -1, \quad c_3 = -\frac{2}{3!}, \quad c_4 = -\frac{2}{4!}, \quad c_5 = -\frac{2}{5!}, \quad c_6 = -\frac{2}{6!}, \quad c_7 = -\frac{2}{7!}, \ldots
$$

Así, tenemos que la solución de la ecuación diferencial está dada por

$$
y(x) = -2 + 6x - x^2 + \left(-\frac{2}{3!} \right) x^3 + \left(-\frac{2}{4!} \right) x^4 + \left(-\frac{2}{5!} \right) x^5 + \left(-\frac{2}{6!} \right) x^6 + \ldots
$$

$$
= -2 \left(1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \frac{1}{5!} x^5 + \frac{1}{6!} x^6 + \ldots \right) + 8x
$$

$$
= -2e^x + 8x.
$$

5.2.2 Solución cerca de puntos singulares

Tenemos que un punto singular $x = x_0$ de la ecuación diferencial (5.2), se subdivide en regular o irregular. Dicha clasificación depende las funciones P y Q dadas en la forma estándar (5.3).

Definición 5.5: Puntos singulares regulares e irregulares

Se dice que un punto x_0 es un punto **punto singular regular o normal** de la ecuación diferencial (5.2) si las funciones $p(x) = (x-x_0)P(x)$ y $q(x) = (x-x_0)^2Q(x)$ son analíticas en x_0. Un punto singular no regular se conoce como un **punto singular irregular** de la ecuación.

La definición nos dice que, si una o las dos funciones p y q no son analíticas en x_0, tenemos que x_0 es un punto singular irregular.

Ejemplo 5.15

Encuentre y clasifique los puntos singulares de las siguientes ecuaciones diferenciales

(a) $(x^2 - 1) y'' + 2xy' + 6y = 0$
(b) \(x^2(x-5)^2 y'' + (x-5) y' + 4y = 0 \)
(c) \((x^2 - 4)^2 y'' + (x - 2) y' + 2y = 0 \).

Solución.

(a) En su forma normal, la ecuación se expresa como

\[
y'' + \frac{2x}{(x^2 - 1)} y' + \frac{6}{(x^2 - 1)} y = 0
\]

se observa que

\[P(x) = \frac{2x}{(x^2 - 1)} = \frac{2x}{(x-1)(x+1)} \quad y \quad Q(x) = \frac{6}{(x-1)(x+1)}.\]

Así, tenemos que los puntos singulares son \(x = -1 \) y \(x = 1 \). Luego, analizando para \(x = -1 \)

\[p(x) = (x + 1) P(x) = \frac{2x}{x - 1} \quad y \quad q(x) = (x + 1)^2 Q(x) = \frac{6(x+1)}{x - 1}\]

vemos que \(p \) y \(q \) son analíticas en \(x = -1 \). Por lo que, \(x = -1 \) es un punto singular regular.

Luego, para \(x = 1 \)

\[p(x) = (x - 1) P(x) = \frac{2x}{x + 1} \quad y \quad q(x) = (x - 1)^2 Q(x) = \frac{6(x-1)}{x + 1}\]

también se observa que las funciones \(p \) y \(q \) son analíticas en \(x = 1 \). Por lo tanto, \(x = 1 \) es un punto singular regular.

(b) Escrita en su forma estándar, la ecuación queda de la siguiente manera

\[
y'' + \frac{(x-5)}{x^2(x-5)^2} y' + \frac{4}{x^2(x-5)^2} y = 0
\]

se observa que

\[P(x) = \frac{(x-5)}{x^2(x-5)^2} = \frac{1}{x^2(x-5)} \quad y \quad Q(x) = \frac{4}{x^2(x-5)^2}.\]

Por lo tanto, los puntos singulares son \(x = 0 \) y \(x = 5 \). Analizando para \(x = 0 \)

\[p(x) = (x - 0) P(x) = \frac{1}{x(x-5)} \quad y \quad q(x) = (x - 0)^2 Q(x) = \frac{4}{(x-5)^2}\]

vemos que \(p \) no es analítica en \(x = 0 \). Así, \(x = 0 \) es un punto singular irregular.

Luego, para \(x = 5 \)

\[p(x) = (x - 5) P(x) = \frac{1}{x^2} \quad y \quad q(x) = (x - 5)^2 Q(x) = \frac{4}{x^2}\]

se observa que las funciones \(p \) y \(q \) son analíticas en \(x = 5 \). Por lo tanto, \(x = 5 \) es un punto singular regular.

(c) Expresando la ecuación en su forma normal

\[
y'' + \frac{(x-2)}{(x^2 - 4)^2} y' + \frac{2}{(x^2 - 4)^2} y = 0
\]

se observa que

\[P(x) = \frac{(x-2)}{(x^2 - 4)^2} = \frac{1}{(x-2)(x+2)} \quad y \quad Q(x) = \frac{2}{(x^2 - 4)^2} = \frac{2}{(x-2)^2(x+2)^2}.\]
Entonces los puntos singulares son \(x = -2 \) y \(x = 2 \). Luego, analizando para \(x = -2 \)

\[
p(x) = (x + 2)P(x) = \frac{1}{(x - 2)(x + 2)} \quad \text{y} \quad q(x) = (x + 2)^2Q(x) = \frac{2}{(x - 2)^2}
\]

vemos que \(p \) no es analítica en \(x = -2 \). Así, \(x = -2 \) es un punto singular irregular.

Luego, para \(x = 2 \)

\[
p(x) = (x - 2)P(x) = \frac{1}{(x + 2)^2} \quad \text{y} \quad q(x) = (x - 2)^2Q(x) = \frac{2}{(x + 2)^2}
\]

se observa que las funciones \(p \) y \(q \) son analíticas en \(x = 2 \). Por lo tanto, el punto \(x = 2 \) es un punto singular regular.

Definición 5.6: Ecuación indicial

Si \(x_0 \) es un punto singular regular de (5.3), entonces la ecuación indicial para este punto está dada por

\[
r(r - 1) + p_0r + q_0 = 0 \tag{5.6}
\]

donde

\[
p_0 = \lim_{x \to x_0} (x - x_0)P(x) \quad \text{y} \quad q_0 = \lim_{x \to x_0} (x - x_0)^2Q(x).
\]

Las raíces de la ecuación (5.6) son los exponentes (índices) de la singularidad \(x_0 \).

Teorema 5.5: Teorema de Frobenius

Si \(x_0 \) es un punto singular regular de la ecuación diferencial (5.2), existe al menos una solución de la forma

\[
y(x) = (x - x_0)^r \sum_{n=0}^{+\infty} c_n(x - x_0)^n = \sum_{n=0}^{+\infty} c_n(x - x_0)^{n+r}, \quad c_0 \neq 0, \tag{5.7}
\]

donde \(r \) es una constante a determinar. Donde esta serie convergerá en al menos algún intervalo \(x_0 < x < \rho + x_0 \).

Casos de las raíces indiciales

Al usar el método de Frobenius, se pueden distinguir tres casos correspondientes a la naturaleza de las raíces indiciales \(r_1 \) y \(r_2 \) de (5.6).

Cas o I: Si \(r_1 \) y \(r_2 \) son distintas y no difieren en un entero, existen dos soluciones linealmente independientes de la forma

\[
y_1(x) = \sum_{n=0}^{+\infty} a_n(x - x_0)^{n+r_1} \quad \text{y} \quad y_2(x) = \sum_{n=0}^{+\infty} b_n(x - x_0)^{n+r_2}
\]

Cas o II: Si \(r_1 - r_2 \) es un entero positivo, existen dos soluciones linealmente independientes de la ecuación (5.3) de la forma

\[
y_1(x) = \sum_{n=0}^{+\infty} a_n(x - x_0)^{n+r_1}, \quad a_0 \neq 0 \quad \text{y} \quad y_2(x) = Cy_1(x) \ln x + \sum_{n=0}^{+\infty} b_n(x - x_0)^{n+r_2}, \quad b_0 \neq 0,
\]

donde \(C \) es una constante que podría ser cero.

Cas o III: Si \(r_1 = r_2 \), siempre existen dos soluciones linealmente independientes de la forma

\[
y_1(x) = \sum_{n=0}^{+\infty} a_n(x - x_0)^{n+r_1}, \quad a_0 \neq 0 \quad \text{y} \quad y_2(x) = Cy_1(x) \ln x + \sum_{n=0}^{+\infty} b_n(x - x_0)^{n+r_1}.
\]
Ejemplo 5.16

Usando el teorema de Frobenius, encontrar una solución en serie de potencia de la ecuación

\[3xy'' + y' - y = 0 \]

Solución.

Se observa que \(x = 0 \) es un punto singular regular. Entonces

\[y = \sum_{n=0}^{\infty} c_n x^{n+r}, \quad y' = \sum_{n=0}^{\infty} (n+r) c_n x^{n+r-1} \quad y \quad y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1) c_n x^{n+r-2} \]

Reemplazando en la ecuación

\[\sum 3xy'' + y' - y = 3 \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-1} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-2} - \sum_{n=0}^{\infty} c_n x^{n+r}, \]

obtenemos que

\[3xy'' + y' - y = \left[r(3r-2)c_0 x^{-1} + \sum_{n=0}^{\infty} [(k+r+1)(3k+3r+1)c_{k+1} + c_k] x^k \right] = 0 \]

Lo que implica

\[r(3r-2)c_0 = 0 \quad y \quad (k+r+1)(3k+3r+1)c_{k+1} + c_k = 0, \quad k = 0, 1, 2, 3 \]

tenemos que las raíces de la ecuación indicial son \(r_1 = \frac{2}{3} \) y \(r_2 = 0 \).

Para \(r_1 = \frac{2}{3} \), se tiene

\[c_{k+1} = \frac{c_k}{(3k+5)(k+1)}, \quad k = 0, 1, 2, 3 \]

Luego, para algunos valores de \(k \), obtenemos los siguientes coeficientes

\[k = 0: \quad c_1 = \frac{1}{5 \cdot 1} c_0 \]
\[k = 1: \quad c_2 = \frac{1}{2! \cdot 5 \cdot 8} c_0 \]
\[k = 2: \quad c_3 = \frac{1}{3! \cdot 5 \cdot 8 \cdot 11} c_0 \]
\[k = 3: \quad c_4 = \frac{1}{4! \cdot 5 \cdot 8 \cdot 11 \cdot 14} c_0 \]

En general,

\[c_n = \frac{c_0}{n! \cdot 5 \cdot 8 \cdot 11 \ldots (3n-2)}, \quad n = 1, 2, 3, \ldots \]

Por otro lado, para \(r_2 = 0 \), tenemos la siguiente recurrencia

\[c_{k+1} = \frac{c_k}{(k+1)(3k+1)}, \quad k = 0, 1, 2, 3 \]

Así, para algunos valores de \(k \), tenemos

\[k = 0: \quad c_1 = \frac{c_0}{1 \cdot 1} \]
\[k = 1: \quad c_2 = \frac{c_0}{2! \cdot 1 \cdot 4} \]
\[k = 2: \quad c_3 = \frac{c_0}{3! \cdot 4 \cdot 7} \]
\[k = 3: \quad c_4 = \frac{c_0}{4! \cdot 4 \cdot 7 \cdot 10} \]
Solución mediante series de potencias

\[c_n = \frac{c_0}{n!5 \cdot 4 \cdot 7 \ldots (3n-2)}, \quad n = 1, 2, 3, \ldots \]

Por tanto, llegamos a la solución

\[y = C_1 x^{2/3} \left[1 + \sum_{n=1}^{\infty} \frac{1}{n!5 \cdot 8 \cdot 11 \ldots (3n+2)} x^n \right] + C_2 \left[1 + \sum_{n=1}^{\infty} \frac{1}{n!4 \cdot 7 \ldots (3n-2)} x^n \right] \]

Ejemplo 5.17

Determine una solución en serie de potencias de la ecuación diferencial

\[xy'' + (5 + 3x)y' + 3y = 0. \]

Solución.

Es fácil ver que \(x = 0 \) es un punto singular regular. Entonces

\[y = \sum_{n=0}^{\infty} c_n x^{n+r}, \quad y' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-1}, \quad y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-2} \]

Reemplazando en la ecuación, se tiene

\[
\sum_{n=0}^{\infty} (n+1)(n+r-1)c_n x^{n+r-1} + \sum_{n=0}^{\infty} 5(n+r)c_n x^{n+r-1} + \sum_{n=0}^{\infty} 3(n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} 3c_n x^{n+r} = x^r \left(\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-1} + \sum_{n=0}^{\infty} 3(n+r+1)c_n x^n \right) = 0
\]

Por otro lado, haciendo \(k = n-1 \) entonces \(n = k + 1 \); luego, cuando \(n = 1 \) tenemos que \(k = 0 \). Luego, obtenemos

\[
x^r \left[(r+4)c_0 x^{-1} + \sum_{k=0}^{\infty} [(k+r+1)(k+r+5)c_{k+1} + 3(k+r+1)c_k] x^k \right] = 0
\]

Así,

\[r(r+4) = 0 \Rightarrow r_1 = 0 \quad \lor \quad r_2 = -4 \]

entonces \(r_1 - r_2 \) es un entero positivo.

Además, tenemos la siguiente recurrencia

\[(k+r+1)(k+r+5)c_{k+1} + 3(k+r+1)c_k = 0, \quad k = 0, 1, 2, \ldots \]

Iteramos con la menor raíz \(r_2 = -4 \)

\[k = 0: \quad 1(-3)c_1 + 3(-3)c_0 = 0 \Rightarrow c_1 = \frac{9c_0}{-3} = -3c_0 \]
\[k = 1: \quad 2(-2)c_2 + 3(-2)c_1 = 0 \Rightarrow c_2 = \frac{6c_1}{-4} = \frac{9}{2}c_0 \]
\[k = 2: \quad 3(-1)c_3 + 3(-1)c_2 = 0 \Rightarrow c_3 = \frac{9}{2}c_0 \]
\[k = 3: \quad 4(0)c_4 + 3(0)c_3 = 0 \]

Para \(k \geq 4 \) se tiene

\[c_{k+1} = -\frac{3}{k+1} c_k \]
Iteramos

\[
k = 4: \quad c_5 = -\frac{3}{5} c_4
\]
\[
k = 5: \quad c_6 = -\frac{3}{6} c_5 = -\frac{3}{5} \cdot \frac{3}{6} c_4
\]
\[
k = 6: \quad c_7 = -\frac{3}{7} c_6 = -\frac{3}{5} \cdot \frac{3}{6} \cdot \frac{3}{7} c_4 = -\frac{3^3 4!}{7!} c_4
\]

En general, tenemos
\[
c_n = (-1)^n \frac{3^{n-4} 4!}{n!} c_4, \quad n \geq 4.
\]

Entonces,
\[
y = \sum_{n=0}^{\infty} c_n x^{n-4}
\]
\[
= x^{-4} \left[c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \sum_{n=0}^{\infty} c_n x^n \right]
\]
\[
= x^{-4} \left[c_0 - 3c_0 x + \frac{9}{2} c_0 x^2 - \frac{9}{2} c_0 x^3 + c_4 x^4 + \sum_{n=5}^{\infty} (-1)^n \frac{3^{n-4} 4!}{n!} c_4 x^n \right]
\]

De donde obtenemos
\[
y_1(x) = c_0 x^{-4} \left(1 - 3x + \frac{9}{2} x^2 - \frac{9}{2} x^3 \right) \quad y_2(x) = c_4 \left(1 + \sum_{n=5}^{\infty} (-1)^n \frac{3^{n-4} 4!}{n!} c_4 x^{n-4} \right)
\]

Finalmente, concluimos que la solución es
\[
y = c_0 x^{-4} \left(1 - 3x + \frac{9}{2} x^2 - \frac{9}{2} x^3 \right) + c_4 \left(1 + 24 \sum_{n=1}^{\infty} (-1)^n \frac{3^n}{(n+4)!} x^n \right).
\]

Ejemplo 5.18

Use el método de Frobenius para obtener dos soluciones en serie de potencias linealmente independientes en torno a \(x = 0 \) de la siguiente ecuación diferencial
\[
2xy'' + 5y' + xy = 0.
\]

Forme la solución general para \(x > 0 \).

Solución.

Observamos que \(x = 0 \) es un punto singular regular. Entonces, reemplazando
\[
y = \sum_{n=0}^{+\infty} c_n x^{n+r}
\]
en la ecuación diferencial, tenemos
Solución mediante series de potencias

\[0 = 2x \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right)'' + 5 \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right)' + x \sum_{n=0}^{\infty} c_n x^{n+r} \]

\[= 2x \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-2} + 5 \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-1} + x \sum_{n=0}^{\infty} c_n x^{n+r} \]

\[= x^r \left[\sum_{n=0}^{\infty} 2(n+r)(n+r-1)c_n x^{n-1} + \sum_{n=0}^{\infty} 5(n+r)c_n x^{n-1} + \sum_{n=0}^{\infty} c_n x^{n+1} \right] \]

\[= x^r \left[(2r^2 + 3r)c_0 x^{-1} + \sum_{n=1}^{\infty} 2(n+r)(n+r-1)c_n x^{n-1} + \sum_{n=1}^{\infty} 5(n+r)c_n x^{n-1} + \sum_{n=1}^{\infty} c_n x^{n+1} \right] \]

\[= x^r \left[(2r^2 + 3r)c_0 x^{-1} + \sum_{k=1}^{\infty} 2(k+1+r)(k+r)c_{k+1} x^{k} + \sum_{k=0}^{\infty} 5(k+1+r)c_{k+1} x^{k} + \sum_{k=1}^{\infty} c_{k-1} x^{k} \right] \]

\[= (2r^2 + 3r)c_0 x^{-1} + (2r^2 + 7r + 5)c_1 x^r + \sum_{k=1}^{\infty} [2(k+r+1)(k+r)c_{k+1} + 5(k+r+1)c_{k+1} + c_{k-1}] x^{k+r} \]

Lo que implica que

\[2r^2 + 3r = r(2r + 3) = 0\]

\[(2r^2 + 7r + 5)c_1 = 0,\]

y

\[(k+r+1)(2k+2r+5)c_{k+1} + c_{k-1} = 0.\]

Por lo tanto, las raíces indiciales son \(r = -\frac{3}{2}\) y \(r = 0\); y además, \(c_1 = 0\).

Para \(r = \frac{3}{2}\) tenemos la siguiente recurrencia

\[c_{k+1} = -\frac{c_{k-1}}{2(k-1)(k+1)}, \quad k = 1, 2, 3, 4, \ldots\]

Luego, tomando algunos valores para \(k\), se tiene

\[k = 1: \quad c_2 = -\frac{1}{2} c_0\]

\[k = 2: \quad c_3 = -\frac{1}{9} c_1 = 0\]

\[k = 3: \quad c_4 = -\frac{1}{20} c_2 = \frac{1}{40} c_0\]

\[k = 4: \quad c_5 = -\frac{1}{35} c_3 = \frac{1}{315} c_1 = 0\]

\[\vdots \quad \vdots\]

Ahora para \(r = 0\) se tiene la siguiente recurrencia

\[c_{k+1} = -\frac{c_{k-1}}{(k+1)(2k+5)}, \quad k = 1, 2, 3, 4, \ldots\]
Luego, tomando algunos valores para k, se tiene

\[
\begin{align*}
 k = 1: & \quad c_2 = -\frac{1}{14} c_0 \\
 k = 2: & \quad c_3 = -\frac{1}{27} c_1 = 0 \\
 k = 3: & \quad c_4 = -\frac{1}{44} c_2 = \frac{1}{616} c_0 \\
 \vdots & \quad \vdots
\end{align*}
\]

Así, tenemos dos soluciones linealmente independientes

\[
\begin{align*}
 y_1(x) &= x^{-3/2} \left(1 - \frac{1}{2} x^2 + \frac{1}{40} x^4 + \cdots \right) \\
 y_2(x) &= x^0 \left(1 - \frac{1}{14} x^2 + \frac{1}{616} x^4 + \cdots \right)
\end{align*}
\]

Por lo tanto, la solución general en $(0, \infty)$ es

\[
y = C_1 x^{-3/2} \left(1 - \frac{1}{2} x^2 + \frac{1}{40} x^4 + \cdots \right) + C_2 \left(1 - \frac{1}{14} x^2 + \frac{1}{616} x^4 + \cdots \right).
\]
5.3 Ejercicios propuestos

1. Determine el intervalo de convergencia de cada una de las siguientes series de potencias:
 \[a) \sum_{n=0}^{\infty} \frac{3^n}{n} x^n \quad c) \sum_{n=0}^{\infty} \frac{n}{3^{n+1}} (x + 1)^n \quad e) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} x^n \]
 \[b) \sum_{n=0}^{\infty} \frac{25^n}{n!} (x + 6)^n \quad d) \sum_{n=1}^{\infty} \frac{1}{2n - 1} x^n \quad f) \sum_{n=1}^{\infty} \frac{(-1)^n+1}{(2n + 1)!} x^{2n+1} \]

2. Encuentre una representación como serie de potencias para las siguientes funciones e indique su radio de convergencia:
 \[a) f(x) = \frac{x}{1 + x} \quad c) f(x) = \frac{x^2}{(4 + x^2)^2} \quad e) f(x) = \frac{x}{x^2 - x - 2} \]
 \[b) f(x) = \frac{3x}{1 - 2x^2} \quad d) f(x) = \cos^4(x) \quad f) f(x) = \frac{x^2 + 2}{x^3 + 2x^2 + 2} \]

3. Determine dos soluciones en forma de series de potencias, de las siguientes ecuaciones diferenciales, entorno al punto ordinario \(x = 0 \).
 \[a) (x + 1)y'' + y' = 0 \quad d) y'' - (x + 1)y' - y = 0 \]
 \[b) xy'' + y' + xy = 0 \quad e) (x^2 + 2)y'' + 3xy' - y = 0 \]
 \[c) y'' + 4xy' + y = 0 \quad f) y'' + xy = 0 \]

4. En los siguientes problemas, use el método de series de potencias para resolver el problema de inicial dado.
 \[a) y'' + x^2 y' + x^2 y = 0, \quad y'(0) = -1, \quad y(0) = 1 \]
 \[b) (x - 1)y'' - xy' + y = 0, \quad y'(0) = 6, \quad y(0) = -2 \]
 \[c) x^2 y'' - 12y = 0, \quad y'(1) = 5, \quad y(1) = 3 \]
 \[d) (x^2 + 6x)y'' + (3x + 9)y' + 3y = 0, \quad y'(-3) = 2, \quad y(-3) = 0 \]

5. Determine y clasifique los puntos singulares de las siguientes ecuaciones diferenciales:
 \[a) x^3 y'' - 2x^2 y' + y = 0 \]
 \[b) x(x + 2)y'' + y = 0 \]
 \[c) x^2 y'' - 12y = 0 \]
 \[d) (x^3 + 3x^2 y'' + x(3x - 9)^2 y' + (x + 1)y = 0 \]

6. Use el método de Frobenius para encontrar dos soluciones en serie linealmente independientes alrededor de \(x = 0 \).
 \[a) xy'' + 2y' + 9xy = 0 \]
 \[b) xy'' + 2y' - 4xy = 0 \]
 \[c) 3x^2 y'' + 3x^2 y' + 2y = 0 \]
 \[d) xy'' + (x^2 + 1)y' + 4xy = 0 \]
Bibliografía

ALDO ALCIDES MENDOZA URIBE
Matemático de profesión; con grado de Magíster en Matemática Pura obtenido en la Pontificia Universidad Católica del Perú.
Profesor Principal del Dpto. Académico de Matemática de la Facultad de Ciencias de la UNALM, tiene a cargo el dictado de los cursos de Ecuaciones Diferenciales, Cálculo Avanzado I y Cálculo Avanzado II.

ALESSANDRI CANCHOA QUISPE

JORGE EMILIANO CONDEÑA CAHUANA
Matemático e informático por la Universidad Nacional San Luis Gonzaga de Ica, Magíster en Matemática en la Pontificia Universidad Católica del Perú.
Docente del Departamento Académico de Matemática de la Facultad de Ciencias de la Universidad Nacional Agraria La Molina.

CARMEN ROSA MONZÓN MONZÓN
Matemática de profesión; con grado de Magister en Matemática, obtenido en la Pontificia Universidad Católica del Perú.
Docente del Departamento Académico de Matemática en la UNALM, actualmente dicto el curso de Análisis Matemático I y Análisis Matemático II.
El presente libro está elaborado para un ciclo académico del curso de ecuaciones diferenciales dirigido a los estudiantes de ingeniería, ciencias y matemática aplicada de las universidades que se imparte esta asignatura. Se presentan las ecuaciones diferenciales de primer orden y de orden superior, sus métodos y técnicas de solución, propiedades y teoremas fundamentales de las ecuaciones diferenciales; además, se realiza un estudio de la transformada de Laplace y sus aplicaciones a ecuaciones diferenciales lineales. Por otro lado, se presentan definiciones y resultados de sistemas de ecuaciones diferenciales y su estabilidad para el caso lineal y no lineal. Asimismo, se resuelven y desarrollan aplicaciones de las ecuaciones diferenciales a la física, química, biología y otros problemas de ingeniería, también se formulan ejercicios propuestos en cada capítulo, a fin de facilitar el aprendizaje de los estudiantes.